Interpreting black-box models: a review on explainable artificial intelligence

V Hassija, V Chamola, A Mahapatra, A Singal… - Cognitive …, 2024 - Springer
Recent years have seen a tremendous growth in Artificial Intelligence (AI)-based
methodological development in a broad range of domains. In this rapidly evolving field …

[HTML][HTML] A comprehensive review on ensemble deep learning: Opportunities and challenges

A Mohammed, R Kora - Journal of King Saud University-Computer and …, 2023 - Elsevier
In machine learning, two approaches outperform traditional algorithms: ensemble learning
and deep learning. The former refers to methods that integrate multiple base models in the …

Revisiting the universal principle for the rational design of single-atom electrocatalysts

H Xu, D Cheng, D Cao, XC Zeng - Nature Catalysis, 2024 - nature.com
The notion of descriptors has been widely used for assessing structure–activity relationships
for many types of heterogenous catalytic reaction, as well as in searching for highly active …

Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Raft: Reward ranked finetuning for generative foundation model alignment

H Dong, W **ong, D Goyal, Y Zhang, W Chow… - arxiv preprint arxiv …, 2023 - arxiv.org
Generative foundation models are susceptible to implicit biases that can arise from
extensive unsupervised training data. Such biases can produce suboptimal samples …

A survey of ensemble learning: Concepts, algorithms, applications, and prospects

ID Mienye, Y Sun - Ieee Access, 2022 - ieeexplore.ieee.org
Ensemble learning techniques have achieved state-of-the-art performance in diverse
machine learning applications by combining the predictions from two or more base models …

Explainable AI (XAI): Core ideas, techniques, and solutions

R Dwivedi, D Dave, H Naik, S Singhal, R Omer… - ACM Computing …, 2023 - dl.acm.org
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …

The simple macroeconomics of AI

D Acemoglu - Economic Policy, 2025 - academic.oup.com
This paper evaluates claims about the large macroeconomic implications of new advances
in Artificial intelligence (AI). It starts from a task-based model of AI's effects, working through …

Quantum computing for finance

D Herman, C Googin, X Liu, Y Sun, A Galda… - Nature Reviews …, 2023 - nature.com
Quantum computers are expected to surpass the computational capabilities of classical
computers and have a transformative impact on numerous industry sectors. We present a …

How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …