Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review of modern recommender systems using generative models (gen-recsys)
Traditional recommender systems typically use user-item rating histories as their main data
source. However, deep generative models now have the capability to model and sample …
source. However, deep generative models now have the capability to model and sample …
Deep learning in mobile and wireless networking: A survey
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …
services pose unprecedented demands on mobile and wireless networking infrastructure …
[PDF][PDF] International conference on machine learning
W Li, C Wang, G Cheng, Q Song - Transactions on machine learning …, 2023 - par.nsf.gov
In this paper, we make the key delineation on the roles of resolution and statistical
uncertainty in hierarchical bandits-based black-box optimization algorithms, guiding a more …
uncertainty in hierarchical bandits-based black-box optimization algorithms, guiding a more …
What can transformers learn in-context? a case study of simple function classes
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …
in-context examples (input-output pairs corresponding to some task) along with a new query …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
From data to functa: Your data point is a function and you can treat it like one
It is common practice in deep learning to represent a measurement of the world on a
discrete grid, eg a 2D grid of pixels. However, the underlying signal represented by these …
discrete grid, eg a 2D grid of pixels. However, the underlying signal represented by these …
Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
Deep neural networks provide unprecedented performance gains in many real-world
problems in signal and image processing. Despite these gains, the future development and …
problems in signal and image processing. Despite these gains, the future development and …
Transformers can do bayesian inference
Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow
the explicit specification of prior knowledge and accurately capture model uncertainty. We …
the explicit specification of prior knowledge and accurately capture model uncertainty. We …
Card: Classification and regression diffusion models
Learning the distribution of a continuous or categorical response variable y given its
covariates x is a fundamental problem in statistics and machine learning. Deep neural …
covariates x is a fundamental problem in statistics and machine learning. Deep neural …
Meta-learning with latent embedding optimization
Gradient-based meta-learning techniques are both widely applicable and proficient at
solving challenging few-shot learning and fast adaptation problems. However, they have …
solving challenging few-shot learning and fast adaptation problems. However, they have …