Natural language generation and understanding of big code for AI-assisted programming: A review

MF Wong, S Guo, CN Hang, SW Ho, CW Tan - Entropy, 2023 - mdpi.com
This paper provides a comprehensive review of the literature concerning the utilization of
Natural Language Processing (NLP) techniques, with a particular focus on transformer …

A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …

Software vulnerability detection using deep neural networks: a survey

G Lin, S Wen, QL Han, J Zhang… - Proceedings of the …, 2020 - ieeexplore.ieee.org
The constantly increasing number of disclosed security vulnerabilities have become an
important concern in the software industry and in the field of cybersecurity, suggesting that …

Unifying the perspectives of nlp and software engineering: A survey on language models for code

Z Zhang, C Chen, B Liu, C Liao, Z Gong, H Yu… - arxiv preprint arxiv …, 2023 - arxiv.org
In this work we systematically review the recent advancements in software engineering with
language models, covering 70+ models, 40+ evaluation tasks, 180+ datasets, and 900 …

VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection

D Zou, S Wang, S Xu, Z Li, H ** - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Fine-grained software vulnerability detection is an important and challenging problem.
Ideally, a detection system (or detector) not only should be able to detect whether or not a …

Data-driven cybersecurity incident prediction: A survey

N Sun, J Zhang, P Rimba, S Gao… - … surveys & tutorials, 2018 - ieeexplore.ieee.org
Driven by the increasing scale and high profile cybersecurity incidents related public data,
recent years we have witnessed a paradigm shift in understanding and defending against …

Vuldeelocator: a deep learning-based fine-grained vulnerability detector

Z Li, D Zou, S Xu, Z Chen, Y Zhu… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Automatically detecting software vulnerabilities is an important problem that has attracted
much attention from the academic research community. However, existing vulnerability …

Prompt-enhanced software vulnerability detection using chatgpt

C Zhang, H Liu, J Zeng, K Yang, Y Li, H Li - … of the 2024 IEEE/ACM 46th …, 2024 - dl.acm.org
With the increase in software vulnerabilities that cause significant economic and social
losses, automatic vulnerability detection has become essential in software development and …

Deeplinedp: Towards a deep learning approach for line-level defect prediction

C Pornprasit… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Defect prediction is proposed to assist practitioners effectively prioritize limited Software
Quality Assurance (SQA) resources on the most risky files that are likely to have post-release …