Quantum science with optical tweezer arrays of ultracold atoms and molecules
Single atoms and molecules can be trapped in tightly focused beams of light that form
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
'optical tweezers', affording exquisite capabilities for the control and detection of individual …
Quantum spin liquids: a review
Quantum spin liquids may be considered'quantum disordered'ground states of spin systems,
in which zero-point fluctuations are so strong that they prevent conventional magnetic long …
in which zero-point fluctuations are so strong that they prevent conventional magnetic long …
Ytterbium nuclear-spin qubits in an optical tweezer array
We report on the realization of a fast, scalable, and high-fidelity qubit architecture, based on
Yb 171 atoms in an optical tweezer array. We demonstrate several attractive properties of …
Yb 171 atoms in an optical tweezer array. We demonstrate several attractive properties of …
Half-minute-scale atomic coherence and high relative stability in a tweezer clock
The preparation of large, low-entropy, highly coherent ensembles of identical quantum
systems is fundamental for many studies in quantum metrology, simulation and information …
systems is fundamental for many studies in quantum metrology, simulation and information …
Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
The realization of large-scale fully controllable quantum systems is an exciting frontier in
modern physical science. We use atom-by-atom assembly to implement a platform for the …
modern physical science. We use atom-by-atom assembly to implement a platform for the …
Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice
Quantum walks provide a framework for designing quantum algorithms that is both intuitive
and universal. To leverage the computational power of these walks, it is important to be able …
and universal. To leverage the computational power of these walks, it is important to be able …
Quantum gas microscopy for single atom and spin detection
C Gross, WS Bakr - Nature Physics, 2021 - nature.com
A particular strength of ultracold quantum gases is the range of versatile detection methods
that are available. As they are based on atom–light interactions, the whole quantum optics …
that are available. As they are based on atom–light interactions, the whole quantum optics …
Two-photon interference: the Hong–Ou–Mandel effect
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a
new quantum era. Indeed, two-photon interference has no classical analogue, giving it a …
new quantum era. Indeed, two-photon interference has no classical analogue, giving it a …
Observation of pairwise level degeneracies and the quantum regime of the Arrhenius law in a double-well parametric oscillator
By applying a microwave drive to a specially designed Josephson circuit, we have realized
a double-well model system: a Kerr oscillator submitted to a squeezing force. We have …
a double-well model system: a Kerr oscillator submitted to a squeezing force. We have …
Local readout and control of current and kinetic energy operators in optical lattices
Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms,
allowing one to measure local observables and snapshots of quantum states. However …
allowing one to measure local observables and snapshots of quantum states. However …