Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
[HTML][HTML] Federated learning for 6G: Applications, challenges, and opportunities
Standard machine-learning approaches involve the centralization of training data in a data
center, where centralized machine-learning algorithms can be applied for data analysis and …
center, where centralized machine-learning algorithms can be applied for data analysis and …
Edge artificial intelligence for 6G: Vision, enabling technologies, and applications
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …
wireless networks. It has been envisioned that 6G will be transformative and will …
What is semantic communication? A view on conveying meaning in the era of machine intelligence
In the 1940s, Claude Shannon developed the information theory focusing on quantifying the
maximum data rate that can be supported by a communication channel. Guided by this …
maximum data rate that can be supported by a communication channel. Guided by this …
Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G
Pushing artificial intelligence (AI) from central cloud to network edge has reached board
consensus in both industry and academia for materializing the vision of artificial intelligence …
consensus in both industry and academia for materializing the vision of artificial intelligence …
A survey on over-the-air computation
Communication and computation are often viewed as separate tasks. This approach is very
effective from the perspective of engineering as isolated optimizations can be performed …
effective from the perspective of engineering as isolated optimizations can be performed …
Over-the-air federated learning from heterogeneous data
We focus on over-the-air (OTA) Federated Learning (FL), which has been suggested
recently to reduce the communication overhead of FL due to the repeated transmissions of …
recently to reduce the communication overhead of FL due to the repeated transmissions of …
Machine learning for large-scale optimization in 6g wireless networks
The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from
“connected things” to “connected intelligence”, featured by ultra high density, large-scale …
“connected things” to “connected intelligence”, featured by ultra high density, large-scale …
Communication-efficient and distributed learning over wireless networks: Principles and applications
Machine learning (ML) is a promising enabler for the fifth-generation (5G) communication
systems and beyond. By imbuing intelligence into the network edge, edge nodes can …
systems and beyond. By imbuing intelligence into the network edge, edge nodes can …