Distributed learning in wireless networks: Recent progress and future challenges

M Chen, D Gündüz, K Huang, W Saad… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …

[HTML][HTML] Federated learning for 6G: Applications, challenges, and opportunities

Z Yang, M Chen, KK Wong, HV Poor, S Cui - Engineering, 2022 - Elsevier
Standard machine-learning approaches involve the centralization of training data in a data
center, where centralized machine-learning algorithms can be applied for data analysis and …

Edge artificial intelligence for 6G: Vision, enabling technologies, and applications

KB Letaief, Y Shi, J Lu, J Lu - IEEE Journal on Selected Areas …, 2021 - ieeexplore.ieee.org
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …

What is semantic communication? A view on conveying meaning in the era of machine intelligence

Q Lan, D Wen, Z Zhang, Q Zeng, X Chen… - Journal of …, 2021 - ieeexplore.ieee.org
In the 1940s, Claude Shannon developed the information theory focusing on quantifying the
maximum data rate that can be supported by a communication channel. Guided by this …

Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions

Q Duan, J Huang, S Hu, R Deng… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …

Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G

G Zhu, Z Lyu, X Jiao, P Liu, M Chen, J Xu, S Cui… - Science China …, 2023 - Springer
Pushing artificial intelligence (AI) from central cloud to network edge has reached board
consensus in both industry and academia for materializing the vision of artificial intelligence …

A survey on over-the-air computation

A Şahin, R Yang - IEEE Communications Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Communication and computation are often viewed as separate tasks. This approach is very
effective from the perspective of engineering as isolated optimizations can be performed …

Over-the-air federated learning from heterogeneous data

T Sery, N Shlezinger, K Cohen… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
We focus on over-the-air (OTA) Federated Learning (FL), which has been suggested
recently to reduce the communication overhead of FL due to the repeated transmissions of …

Machine learning for large-scale optimization in 6g wireless networks

Y Shi, L Lian, Y Shi, Z Wang, Y Zhou… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The sixth generation (6G) wireless systems are envisioned to enable the paradigm shift from
“connected things” to “connected intelligence”, featured by ultra high density, large-scale …

Communication-efficient and distributed learning over wireless networks: Principles and applications

J Park, S Samarakoon, A Elgabli, J Kim… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Machine learning (ML) is a promising enabler for the fifth-generation (5G) communication
systems and beyond. By imbuing intelligence into the network edge, edge nodes can …