Computational approaches streamlining drug discovery

AV Sadybekov, V Katritch - Nature, 2023 - nature.com
Computer-aided drug discovery has been around for decades, although the past few years
have seen a tectonic shift towards embracing computational technologies in both academia …

Geometric deep learning on molecular representations

K Atz, F Grisoni, G Schneider - Nature Machine Intelligence, 2021 - nature.com
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Machine learning in preclinical drug discovery

DB Catacutan, J Alexander, A Arnold… - Nature Chemical …, 2024 - nature.com
Drug-discovery and drug-development endeavors are laborious, costly and time consuming.
These programs can take upward of 12 years and cost US $2.5 billion, with a failure rate of …

Artificial intelligence in drug discovery: recent advances and future perspectives

J Jiménez-Luna, F Grisoni, N Weskamp… - Expert opinion on drug …, 2021 - Taylor & Francis
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The
widespread adoption of machine learning, in particular deep learning, in multiple scientific …

Structure-based drug design with geometric deep learning

C Isert, K Atz, G Schneider - Current Opinion in Structural Biology, 2023 - Elsevier
Abstract Structure-based drug design uses three-dimensional geometric information of
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …

Language models can learn complex molecular distributions

D Flam-Shepherd, K Zhu, A Aspuru-Guzik - Nature Communications, 2022 - nature.com
Deep generative models of molecules have grown immensely in popularity, trained on
relevant datasets, these models are used to search through chemical space. The …

Machine intelligence for chemical reaction space

P Schwaller, AC Vaucher, R Laplaza… - Wiley …, 2022 - Wiley Online Library
Discovering new reactions, optimizing their performance, and extending the synthetically
accessible chemical space are critical drivers for major technological advances and more …

Chemical language modeling with structured state space sequence models

R Özçelik, S de Ruiter, E Criscuolo, F Grisoni - Nature Communications, 2024 - nature.com
Generative deep learning is resha** drug design. Chemical language models (CLMs)–
which generate molecules in the form of molecular strings–bear particular promise for this …

Generative deep learning for targeted compound design

T Sousa, J Correia, V Pereira… - Journal of chemical …, 2021 - ACS Publications
In the past few years, de novo molecular design has increasingly been using generative
models from the emergent field of Deep Learning, proposing novel compounds that are …