A survey of adversarial attack and defense methods for malware classification in cyber security

S Yan, J Ren, W Wang, L Sun… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
Malware poses a severe threat to cyber security. Attackers use malware to achieve their
malicious purposes, such as unauthorized access, stealing confidential data, blackmailing …

Deep learning for android malware defenses: a systematic literature review

Y Liu, C Tantithamthavorn, L Li, Y Liu - ACM Computing Surveys, 2022 - dl.acm.org
Malicious applications (particularly those targeting the Android platform) pose a serious
threat to developers and end-users. Numerous research efforts have been devoted to …

The role of machine learning in cybersecurity

G Apruzzese, P Laskov, E Montes de Oca… - … Threats: Research and …, 2023 - dl.acm.org
Machine Learning (ML) represents a pivotal technology for current and future information
systems, and many domains already leverage the capabilities of ML. However, deployment …

GDroid: Android malware detection and classification with graph convolutional network

H Gao, S Cheng, W Zhang - Computers & Security, 2021 - Elsevier
The dramatic increase in the number of malware poses a serious challenge to the Android
platform and makes it difficult for malware analysis. In this paper, we propose a novel …

[PDF][PDF] Anomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation.

D Han, Z Wang, W Chen, K Wang, R Yu, S Wang… - NDSS, 2023 - ndss-symposium.org
Concept drift is one of the most frustrating challenges for learning-based security
applications built on the closeworld assumption of identical distribution between training and …

Continuous learning for android malware detection

Y Chen, Z Ding, D Wagner - 32nd USENIX Security Symposium …, 2023 - usenix.org
Machine learning methods can detect Android malware with very high accuracy. However,
these classifiers have an Achilles heel, concept drift: they rapidly become out of date and …

DTMIC: Deep transfer learning for malware image classification

S Kumar, B Janet - Journal of Information Security and Applications, 2022 - Elsevier
In the ever-changing cyber threat landscape, evolving malware threats demand a new
technique for their detection. This paper puts forward a strategy for distinguishing malware …

Dynamic prototype network based on sample adaptation for few-shot malware detection

Y Chai, L Du, J Qiu, L Yin, Z Tian - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
The continuous increase and spread of malware have caused immeasurable losses to
social enterprises and even the country, especially unknown malware. Most existing …

[HTML][HTML] Kronodroid: Time-based hybrid-featured dataset for effective android malware detection and characterization

A Guerra-Manzanares, H Bahsi, S Nõmm - Computers & Security, 2021 - Elsevier
Android malware evolution has been neglected by the available data sets, thus providing a
static snapshot of a non-stationary phenomenon. The impact of the time variable has not had …

Cruparamer: Learning on parameter-augmented api sequences for malware detection

X Chen, Z Hao, L Li, L Cui, Y Zhu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Learning on execution behaviour, ie, sequences of API calls, is proven to be effective in
malware detection. In this paper, we present CruParamer, a deep neural network based …