[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry

T Adão, J Hruška, L Pádua, J Bessa, E Peres, R Morais… - Remote sensing, 2017 - mdpi.com
Traditional imagery—provided, for example, by RGB and/or NIR sensors—has proven to be
useful in many agroforestry applications. However, it lacks the spectral range and precision …

SpectralGPT: Spectral remote sensing foundation model

D Hong, B Zhang, X Li, Y Li, C Li, J Yao… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
The foundation model has recently garnered significant attention due to its potential to
revolutionize the field of visual representation learning in a self-supervised manner. While …

Hypertransformer: A textural and spectral feature fusion transformer for pansharpening

WGC Bandara, VM Patel - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Pansharpening aims to fuse a registered high-resolution panchromatic image (PAN) with a
low-resolution hyperspectral image (LR-HSI) to generate an enhanced HSI with high …

Hyperspectral image classification—Traditional to deep models: A survey for future prospects

M Ahmad, S Shabbir, SK Roy, D Hong… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …

Hyperspectral image classification with convolutional neural network and active learning

X Cao, J Yao, Z Xu, D Meng - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Deep neural network has been extensively applied to hyperspectral image (HSI)
classification recently. However, its success is greatly attributed to numerous labeled …

Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community

JE Ball, DT Anderson, CS Chan - Journal of applied remote …, 2017 - spiedigitallibrary.org
In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the
top in numerous areas, namely computer vision (CV), speech recognition, and natural …

A new deep convolutional neural network for fast hyperspectral image classification

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS journal of photogrammetry …, 2018 - Elsevier
Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed
imagery. In particular, convolutional neural networks (CNNs) are gaining more and more …

Recent advances on spectral–spatial hyperspectral image classification: An overview and new guidelines

L He, J Li, C Liu, S Li - IEEE Transactions on Geoscience and …, 2017 - ieeexplore.ieee.org
Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in the
last four decades from being a sparse research tool into a commodity product available to a …

Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network

Q Yuan, Q Zhang, J Li, H Shen… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure to improve the
performance of the subsequent HSI interpretation and applications. In this paper, a novel …