AI-based reconstruction for fast MRI—A systematic review and meta-analysis

Y Chen, CB Schönlieb, P Liò, T Leiner… - Proceedings of the …, 2022 - ieeexplore.ieee.org
Compressed sensing (CS) has been playing a key role in accelerating the magnetic
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …

Medical image super-resolution reconstruction algorithms based on deep learning: A survey

D Qiu, Y Cheng, X Wang - Computer Methods and Programs in …, 2023 - Elsevier
Background and objective With the high-resolution (HR) requirements of medical images in
clinical practice, super-resolution (SR) reconstruction algorithms based on low-resolution …

Adaptive diffusion priors for accelerated MRI reconstruction

A Güngör, SUH Dar, Ş Öztürk, Y Korkmaz… - Medical image …, 2023 - Elsevier
Deep MRI reconstruction is commonly performed with conditional models that de-alias
undersampled acquisitions to recover images consistent with fully-sampled data. Since …

A survey on deep learning in medicine: Why, how and when?

F Piccialli, V Di Somma, F Giampaolo, S Cuomo… - Information …, 2021 - Elsevier
New technologies are transforming medicine, and this revolution starts with data. Health
data, clinical images, genome sequences, data on prescribed therapies and results …

Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Y Korkmaz, SUH Dar, M Yurt, M Özbey… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …

DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution

S Wang, H Cheng, L Ying, T **ao, Z Ke, H Zheng… - Magnetic resonance …, 2020 - Elsevier
This paper proposes a multi-channel image reconstruction method, named
DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional …

Multimodal transformer for accelerated MR imaging

CM Feng, Y Yan, G Chen, Y Xu, Y Hu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Accelerated multi-modal magnetic resonance (MR) imaging is a new and effective solution
for fast MR imaging, providing superior performance in restoring the target modality from its …

Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data

S Wang, T **ao, Q Liu, H Zheng - Biomedical Signal Processing and …, 2021 - Elsevier
Magnetic resonance imaging is a powerful imaging modality that can provide versatile
information. However, it has a fundamental challenge that is time consuming to acquire …

Emerging trends in fast MRI using deep-learning reconstruction on undersampled k-space data: a systematic review

D Singh, A Monga, HL de Moura, X Zhang, MVW Zibetti… - Bioengineering, 2023 - mdpi.com
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides
excellent soft-tissue contrast and high-resolution images of the human body, allowing us to …

Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models

G Luo, M Blumenthal, M Heide… - Magnetic Resonance in …, 2023 - Wiley Online Library
Purpose We introduce a framework that enables efficient sampling from learned probability
distributions for MRI reconstruction. Method Samples are drawn from the posterior …