A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

Federated learning in mobile edge networks: A comprehensive survey

WYB Lim, NC Luong, DT Hoang, Y Jiao… - … surveys & tutorials, 2020 - ieeexplore.ieee.org
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …

A survey on federated learning

C Zhang, Y **e, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …

Federated machine learning: Concept and applications

Q Yang, Y Liu, T Chen, Y Tong - ACM Transactions on Intelligent …, 2019 - dl.acm.org
Today's artificial intelligence still faces two major challenges. One is that, in most industries,
data exists in the form of isolated islands. The other is the strengthening of data privacy and …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach

A Fallah, A Mokhtari… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract In Federated Learning, we aim to train models across multiple computing units
(users), while users can only communicate with a common central server, without …