Semiconductor spin qubits
The spin degree of freedom of an electron or a nucleus is one of the most basic properties of
nature and functions as an excellent qubit, as it provides a natural two-level system that is …
nature and functions as an excellent qubit, as it provides a natural two-level system that is …
Scaling silicon-based quantum computing using CMOS technology
As quantum processors grow in complexity, attention is moving to the scaling prospects of
the entire quantum computing system, including the classical support hardware. Recent …
the entire quantum computing system, including the classical support hardware. Recent …
Quantum logic with spin qubits crossing the surface code threshold
High-fidelity control of quantum bits is paramount for the reliable execution of quantum
algorithms and for achieving fault tolerance—the ability to correct errors faster than they …
algorithms and for achieving fault tolerance—the ability to correct errors faster than they …
The future of quantum computing with superconducting qubits
For the first time in history, we are seeing a branching point in computing paradigms with the
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
Fast universal quantum gate above the fault-tolerance threshold in silicon
Fault-tolerant quantum computers that can solve hard problems rely on quantum error
correction. One of the most promising error correction codes is the surface code, which …
correction. One of the most promising error correction codes is the surface code, which …
Qubits made by advanced semiconductor manufacturing
Full-scale quantum computers require the integration of millions of qubits, and the potential
of using industrial semiconductor manufacturing to meet this need has driven the …
of using industrial semiconductor manufacturing to meet this need has driven the …
Shared control of a 16 semiconductor quantum dot crossbar array
The efficient control of a large number of qubits is one of the most challenging aspects for
practical quantum computing. Current approaches in solid-state quantum technology are …
practical quantum computing. Current approaches in solid-state quantum technology are …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
Review of performance metrics of spin qubits in gated semiconducting nanostructures
Abstract This Technical Review collects values of selected performance characteristics of
semiconductor spin qubits defined in electrically controlled nanostructures. The …
semiconductor spin qubits defined in electrically controlled nanostructures. The …
A hole spin qubit in a fin field-effect transistor above 4 kelvin
The greatest challenge in quantum computing is achieving scalability. Classical computing,
which previously faced such issues, currently relies on silicon chips hosting billions of fin …
which previously faced such issues, currently relies on silicon chips hosting billions of fin …