Deep learning for tomographic image reconstruction

G Wang, JC Ye, B De Man - Nature machine intelligence, 2020 - nature.com
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …

A review on medical imaging synthesis using deep learning and its clinical applications

T Wang, Y Lei, Y Fu, JF Wynne… - Journal of applied …, 2021 - Wiley Online Library
This paper reviewed the deep learning‐based studies for medical imaging synthesis and its
clinical application. Specifically, we summarized the recent developments of deep learning …

Wavelet-based fourier information interaction with frequency diffusion adjustment for underwater image restoration

C Zhao, W Cai, C Dong, C Hu - Proceedings of the IEEE …, 2024 - openaccess.thecvf.com
Underwater images are subject to intricate and diverse degradation inevitably affecting the
effectiveness of underwater visual tasks. However most approaches primarily operate in the …

[HTML][HTML] A gentle introduction to deep learning in medical image processing

A Maier, C Syben, T Lasser, C Riess - Zeitschrift für Medizinische Physik, 2019 - Elsevier
This paper tries to give a gentle introduction to deep learning in medical image processing,
proceeding from theoretical foundations to applications. We first discuss general reasons for …

Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction

H Shan, A Padole, F Homayounieh, U Kruger… - Nature Machine …, 2019 - nature.com
Commercial iterative reconstruction techniques help to reduce the radiation dose of
computed tomography (CT), but altered image appearance and artefacts can limit their …

Photorealistic style transfer via wavelet transforms

J Yoo, Y Uh, S Chun, B Kang… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Recent style transfer models have provided promising artistic results. However, given a
photograph as a reference style, existing methods are limited by spatial distortions or …

Image reconstruction is a new frontier of machine learning

G Wang, JC Ye, K Mueller… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Over past several years, machine learning, or more generally artificial intelligence, has
generated overwhelming research interest and attracted unprecedented public attention. As …

Framing U-Net via deep convolutional framelets: Application to sparse-view CT

Y Han, JC Ye - IEEE transactions on medical imaging, 2018 - ieeexplore.ieee.org
X-ray computed tomography (CT) using sparse projection views is a recent approach to
reduce the radiation dose. However, due to the insufficient projection views, an analytic …

NAF: neural attenuation fields for sparse-view CBCT reconstruction

R Zha, Y Zhang, H Li - … Conference on Medical Image Computing and …, 2022 - Springer
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT
reconstruction (Cone Beam Computed Tomography) that requires no external training data …

Image reconstruction: From sparsity to data-adaptive methods and machine learning

S Ravishankar, JC Ye, JA Fessler - Proceedings of the IEEE, 2019 - ieeexplore.ieee.org
The field of medical image reconstruction has seen roughly four types of methods. The first
type tended to be analytical methods, such as filtered backprojection (FBP) for X-ray …