[HTML][HTML] Robot learning towards smart robotic manufacturing: A review

Z Liu, Q Liu, W Xu, L Wang, Z Zhou - Robotics and Computer-Integrated …, 2022 - Elsevier
Robotic equipment has been playing a central role since the proposal of smart
manufacturing. Since the beginning of the first integration of industrial robots into production …

Applications of artificial intelligence for disaster management

W Sun, P Bocchini, BD Davison - Natural Hazards, 2020 - Springer
Natural hazards have the potential to cause catastrophic damage and significant
socioeconomic loss. The actual damage and loss observed in the recent decades has …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Machine behaviour

I Rahwan, M Cebrian, N Obradovich, J Bongard… - Nature, 2019 - nature.com
Abstract Machines powered by artificial intelligence increasingly mediate our social, cultural,
economic and political interactions. Understanding the behaviour of artificial intelligence …

Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges

H Shakhatreh, AH Sawalmeh, A Al-Fuqaha, Z Dou… - Ieee …, 2019 - ieeexplore.ieee.org
The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil
application domains, including real-time monitoring, providing wireless coverage, remote …

Learning to drive in a day

A Kendall, J Hawke, D Janz, P Mazur… - … on robotics and …, 2019 - ieeexplore.ieee.org
We demonstrate the first application of deep reinforcement learning to autonomous driving.
From randomly initialised parameters, our model is able to learn a policy for lane following in …

Threat of adversarial attacks on deep learning in computer vision: A survey

N Akhtar, A Mian - Ieee Access, 2018 - ieeexplore.ieee.org
Deep learning is at the heart of the current rise of artificial intelligence. In the field of
computer vision, it has become the workhorse for applications ranging from self-driving cars …

End-to-end driving via conditional imitation learning

F Codevilla, M Müller, A López, V Koltun… - … on robotics and …, 2018 - ieeexplore.ieee.org
Deep networks trained on demonstrations of human driving have learned to follow roads
and avoid obstacles. However, driving policies trained via imitation learning cannot be …