Testing ising models

C Daskalakis, N Dikkala… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Given samples from an unknown multivariate distribution p, is it possible to distinguish
whether p is the product of its marginals versus p being far from every product distribution …

Estimating the mixing time of ergodic markov chains

G Wolfer, A Kontorovich - Conference on Learning Theory, 2019 - proceedings.mlr.press
We address the problem of estimating the mixing time $ t_ {\mathsf {mix}} $ of an arbitrary
ergodic finite Markov chain from a single trajectory of length $ m $. The reversible case was …

Mixing time estimation in reversible markov chains from a single sample path

DJ Hsu, A Kontorovich… - Advances in neural …, 2015 - proceedings.neurips.cc
This article provides the first procedure for computing a fully data-dependent interval that
traps the mixing time $ t_ {mix} $ of a finite reversible ergodic Markov chain at a prescribed …

Mixing time estimation in reversible Markov chains from a single sample path

D Hsu, A Kontorovich, DA Levin, Y Peres, C Szepesvári… - 2019 - projecteuclid.org
The spectral gap ⋆ of a finite, ergodic and reversible Markov chain is an important
parameter measuring the asymptotic rate of convergence. In applications, the transition …

Mixing time estimation in ergodic markov chains from a single trajectory with contraction methods

G Wolfer - Algorithmic Learning Theory, 2020 - proceedings.mlr.press
Abstract The mixing time $ t_ {\mathsf {mix}} $ of an ergodic Markov chain measures the rate
of convergence towards its stationary distribution $\boldsymbol {\pi} $. We consider the …

Estimating graph parameters via random walks with restarts

A Ben-Hamou, RI Oliveira, Y Peres - Proceedings of the Twenty-Ninth Annual …, 2018 - SIAM
In this paper we discuss the problem of estimating graph parameters from a random walk
with restarts. In this setting, an algorithm observes the trajectory of a random walk over an …

Improved estimation of relaxation time in nonreversible Markov chains

G Wolfer, A Kontorovich - The Annals of Applied Probability, 2024 - projecteuclid.org
We show that the minimax sample complexity for estimating the pseudo-spectral gap γ ps of
an ergodic Markov chain in constant multiplicative error is of the order of Θ˜(1 γ ps π⋆) …

Entropy rate estimation for Markov chains with large state space

Y Han, J Jiao, CZ Lee, T Weissman… - Advances in Neural …, 2018 - proceedings.neurips.cc
Entropy estimation is one of the prototypical problems in distribution property testing. To
consistently estimate the Shannon entropy of a distribution on $ S $ elements with …

Minimax optimality of deep neural networks on dependent data via PAC-Bayes bounds

P Alquier, W Kengne - arxiv preprint arxiv:2410.21702, 2024 - arxiv.org
In a groundbreaking work, Schmidt-Hieber (2020) proved the minimax optimality of deep
neural networks with ReLu activation for least-square regression estimation over a large …

Making mean-estimation more efficient using an MCMC trace variance approach: DynaMITE

C Cousins, S Haddadan, E Upfal - arxiv preprint arxiv:2011.11129, 2020 - arxiv.org
We introduce a novel statistical measure for MCMC-mean estimation, the inter-trace
variance ${\rm trv}^{(\tau_ {rel})}({\cal M}, f) $, which depends on a Markov chain ${\cal M} …