Survey on factuality in large language models: Knowledge, retrieval and domain-specificity

C Wang, X Liu, Y Yue, X Tang, T Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As
LLMs find applications across diverse domains, the reliability and accuracy of their outputs …

A survey of large language models in medicine: Progress, application, and challenge

H Zhou, F Liu, B Gu, X Zou, J Huang, J Wu, Y Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs), such as ChatGPT, have received substantial attention due
to their capabilities for understanding and generating human language. While there has …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arxiv preprint arxiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Sharegpt4v: Improving large multi-modal models with better captions

L Chen, J Li, X Dong, P Zhang, C He, J Wang… - … on Computer Vision, 2024 - Springer
Modality alignment serves as the cornerstone for large multi-modal models (LMMs).
However, the impact of different attributes (eg, data type, quality, and scale) of training data …

How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites

Z Chen, W Wang, H Tian, S Ye, Z Gao, E Cui… - Science China …, 2024 - Springer
In this paper, we introduce InternVL 1.5, an open-source multimodal large language model
(MLLM) to bridge the capability gap between open-source and proprietary commercial …

Beavertails: Towards improved safety alignment of llm via a human-preference dataset

J Ji, M Liu, J Dai, X Pan, C Zhang… - Advances in …, 2024 - proceedings.neurips.cc
In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety
alignment in large language models (LLMs). This dataset uniquely separates annotations of …

Llamafactory: Unified efficient fine-tuning of 100+ language models

Y Zheng, R Zhang, J Zhang, Y Ye, Z Luo… - arxiv preprint arxiv …, 2024 - arxiv.org
Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks.
However, it requires non-trivial efforts to implement these methods on different models. We …

Large language models for information retrieval: A survey

Y Zhu, H Yuan, S Wang, J Liu, W Liu, C Deng… - arxiv preprint arxiv …, 2023 - arxiv.org
As a primary means of information acquisition, information retrieval (IR) systems, such as
search engines, have integrated themselves into our daily lives. These systems also serve …

Trustllm: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li… - arxiv preprint arxiv …, 2024 - arxiv.org
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

Chatlaw: Open-source legal large language model with integrated external knowledge bases

J Cui, Z Li, Y Yan, B Chen, L Yuan - CoRR, 2023 - openreview.net
AI legal assistants based on Large Language Models (LLMs) can provide accessible legal
consulting services, but the hallucination problem poses potential legal risks. This paper …