Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on pretrained foundation models: A history from bert to chatgpt
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …
A comprehensive survey on applications of transformers for deep learning tasks
Abstract Transformers are Deep Neural Networks (DNN) that utilize a self-attention
mechanism to capture contextual relationships within sequential data. Unlike traditional …
mechanism to capture contextual relationships within sequential data. Unlike traditional …
Dinov2: Learning robust visual features without supervision
The recent breakthroughs in natural language processing for model pretraining on large
quantities of data have opened the way for similar foundation models in computer vision …
quantities of data have opened the way for similar foundation models in computer vision …
Multimodal foundation models: From specialists to general-purpose assistants
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …
methods to data compression. Recent advances in statistical machine learning have opened …
Self-supervised learning from images with a joint-embedding predictive architecture
This paper demonstrates an approach for learning highly semantic image representations
without relying on hand-crafted data-augmentations. We introduce the Image-based Joint …
without relying on hand-crafted data-augmentations. We introduce the Image-based Joint …
Evidence of a predictive coding hierarchy in the human brain listening to speech
Considerable progress has recently been made in natural language processing: deep
learning algorithms are increasingly able to generate, summarize, translate and classify …
learning algorithms are increasingly able to generate, summarize, translate and classify …
A survey on self-supervised learning: Algorithms, applications, and future trends
Deep supervised learning algorithms typically require a large volume of labeled data to
achieve satisfactory performance. However, the process of collecting and labeling such data …
achieve satisfactory performance. However, the process of collecting and labeling such data …
Conditional prompt learning for vision-language models
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential
to investigate ways to adapt these models to downstream datasets. A recently proposed …
to investigate ways to adapt these models to downstream datasets. A recently proposed …
Scale-mae: A scale-aware masked autoencoder for multiscale geospatial representation learning
Large, pretrained models are commonly finetuned with imagery that is heavily augmented to
mimic different conditions and scales, with the resulting models used for various tasks with …
mimic different conditions and scales, with the resulting models used for various tasks with …
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …
of clinical experts. However, in settings differing from those of the training dataset, the …