A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Bias mitigation for machine learning classifiers: A comprehensive survey

M Hort, Z Chen, JM Zhang, M Harman… - ACM Journal on …, 2024 - dl.acm.org
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …

A survey on datasets for fairness‐aware machine learning

T Le Quy, A Roy, V Iosifidis, W Zhang… - … Reviews: Data Mining …, 2022 - Wiley Online Library
As decision‐making increasingly relies on machine learning (ML) and (big) data, the issue
of fairness in data‐driven artificial intelligence systems is receiving increasing attention from …

Vertical federated learning: Concepts, advances, and challenges

Y Liu, Y Kang, T Zou, Y Pu, Y He, X Ye… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with
different features about the same set of users jointly train machine learning models without …

Machine learning testing: Survey, landscapes and horizons

JM Zhang, M Harman, L Ma… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive survey of techniques for testing machine learning
systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing …

AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias

RKE Bellamy, K Dey, M Hind… - IBM Journal of …, 2019 - ieeexplore.ieee.org
Fairness is an increasingly important concern as machine learning models are used to
support decision making in high-stakes applications such as mortgage lending, hiring, and …

Saint: Improved neural networks for tabular data via row attention and contrastive pre-training

G Somepalli, M Goldblum, A Schwarzschild… - arxiv preprint arxiv …, 2021 - arxiv.org
Tabular data underpins numerous high-impact applications of machine learning from fraud
detection to genomics and healthcare. Classical approaches to solving tabular problems …

Feature inference attack on model predictions in vertical federated learning

X Luo, Y Wu, X **ao, BC Ooi - 2021 IEEE 37th International …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is an emerging paradigm for facilitating multiple organizations' data
collaboration without revealing their private data to each other. Recently, vertical FL, where …

Understanding global feature contributions with additive importance measures

I Covert, SM Lundberg, SI Lee - Advances in Neural …, 2020 - proceedings.neurips.cc
Understanding the inner workings of complex machine learning models is a long-standing
problem and most recent research has focused on local interpretability. To assess the role of …

Toward a quantitative survey of dimension reduction techniques

M Espadoto, RM Martins, A Kerren… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Dimensionality reduction methods, also known as projections, are frequently used in
multidimensional data exploration in machine learning, data science, and information …