Dispersive estimates for 2D-wave equations with critical potentials

L Fanelli, J Zhang, J Zheng - Advances in Mathematics, 2022 - Elsevier
We study the 2D-wave equation with a scaling-critical electromagnetic potential. This
problem is doubly critical, because of the scaling invariance of the model and the …

Decay and Strichartz estimates in critical electromagnetic fields

X Gao, Z Yin, J Zhang, J Zheng - Journal of Functional Analysis, 2022 - Elsevier
We study the L 1→ L∞-decay estimates for the Klein-Gordon equation in the Aharonov-
Bohm magnetic fields, and further prove Strichartz estimates for the Klein-Gordon equation …

Strichartz estimates and wave equation in a conic singular space

J Zhang, J Zheng - Mathematische Annalen, 2020 - Springer
Consider the metric cone X= C (Y)=(0, ∞) _r * YX= C (Y)=(0,∞) r× Y with metric g= dr^ 2+ r^
2h g= dr 2+ r 2 h where the cross section Y is a compact (n-1)(n-1)-dimensional Riemannian …

[HTML][HTML] Strichartz estimates and nonlinear wave equation on nontrap** asymptotically conic manifolds

J Zhang - Advances in Mathematics, 2015 - Elsevier
We prove the global-in-time Strichartz estimates for wave equations on the nontrap**
asymptotically conic manifolds. We obtain estimates for the full set of wave admissible …

Pointwise dispersive estimates for Schrodinger and wave equations in a conical singular space

Q Jia, J Zhang - ar** scattering space
J Zhang, J Zheng - The Journal of Geometric Analysis, 2019 - Springer
We study the nonlinear Klein–Gordon equation on a product space M= R * XM= R× X with
metric ̃ g= dt^ 2-gg~= dt 2-g where g is the scattering metric on X. We establish the global-in …

Precise dispersive estimates for the wave equation inside cylindrical convex domains

M Len - Proceedings of the American Mathematical Society, 2022 - ams.org
In this work, we establish precise local in time dispersive estimates for solutions of the model
case Dirichlet wave equation inside cylindrical convex domains $\Omega\subset\mathbb …

Global-in-time Strichartz estimates and cubic Schr\" odinger equation in a conical singular space

J Zhang, J Zheng - arxiv preprint arxiv:1702.05813, 2017 - arxiv.org
In this paper, we study Strichartz estimates for the Schr\" odinger equation on a metric cone
$ X $, where $ X= C (Y)=(0,\infty) _r\times Y $ and the cross section $ Y $ is a $(n-1) …

The diffractive wave trace on manifolds with conic singularities

GA Ford, J Wunsch - Advances in Mathematics, 2017 - Elsevier
Let (X, g) be a compact manifold with conic singularities. Taking Δ g to be the Friedrichs
extension of the Laplace–Beltrami operator, we examine the singularities of the trace of the …

Resolvent and spectral measure for Schrödinger operators on flat Euclidean cones

J Zhang - Journal of Functional Analysis, 2022 - Elsevier
We construct the Schwartz kernel of resolvent and spectral measure for Schrödinger
operators on the flat Euclidean cone (X, g), where X= C (S σ 1)=(0,∞)× S σ 1 is a product …