[HTML][HTML] A review of ensemble learning algorithms used in remote sensing applications

Y Zhang, J Liu, W Shen - Applied Sciences, 2022 - mdpi.com
Machine learning algorithms are increasingly used in various remote sensing applications
due to their ability to identify nonlinear correlations. Ensemble algorithms have been …

Dynamic classifier selection: Recent advances and perspectives

RMO Cruz, R Sabourin, GDC Cavalcanti - Information Fusion, 2018 - Elsevier
Abstract Multiple Classifier Systems (MCS) have been widely studied as an alternative for
increasing accuracy in pattern recognition. One of the most promising MCS approaches is …

A survey of ensemble learning: Concepts, algorithms, applications, and prospects

ID Mienye, Y Sun - Ieee Access, 2022 - ieeexplore.ieee.org
Ensemble learning techniques have achieved state-of-the-art performance in diverse
machine learning applications by combining the predictions from two or more base models …

The choice of scaling technique matters for classification performance

LBV de Amorim, GDC Cavalcanti, RMO Cruz - Applied Soft Computing, 2023 - Elsevier
Dataset scaling, also known as normalization, is an essential preprocessing step in a
machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary …

Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research

S Lessmann, B Baesens, HV Seow… - European Journal of …, 2015 - Elsevier
Many years have passed since Baesens et al. published their benchmarking study of
classification algorithms in credit scoring [Baesens, B., Van Gestel, T., Viaene, S …

[KNIHA][B] Ensemble methods: foundations and algorithms

ZH Zhou - 2025 - books.google.com
Ensemble methods that train multiple learners and then combine them to use, with Boosting
and Bagging as representatives, are well-known machine learning approaches. It has …

A survey of multiple classifier systems as hybrid systems

M Woźniak, M Grana, E Corchado - Information Fusion, 2014 - Elsevier
A current focus of intense research in pattern classification is the combination of several
classifier systems, which can be built following either the same or different models and/or …

Consumer credit risk assessment: A review from the state-of-the-art classification algorithms, data traits, and learning methods

X Zhang, L Yu - Expert Systems with Applications, 2024 - Elsevier
Credit risk assessment is a crucial element in credit risk management. With the extensive
research on consumer credit risk assessment in recent decades, the abundance of literature …

Advances of four machine learning methods for spatial data handling: A review

P Du, X Bai, K Tan, Z Xue, A Samat, J **a, E Li… - … of Geovisualization and …, 2020 - Springer
Most machine learning tasks can be categorized into classification or regression problems.
Regression and classification models are normally used to extract useful geographic …

Dynamic ensemble selection for imbalanced data streams with concept drift

B Jiao, Y Guo, D Gong, Q Chen - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
Ensemble learning, as a popular method to tackle concept drift in data stream, forms a
combination of base classifiers according to their global performances. However, concept …