Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Cost function dependent barren plateaus in shallow parametrized quantum circuits
Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …
Hybrid quantum-classical algorithms and quantum error mitigation
Quantum computers can exploit a Hilbert space whose dimension increases exponentially
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
Theory of overparametrization in quantum neural networks
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …
exciting. Understanding how QNN properties (for example, the number of parameters M) …
Variational quantum linear solver
Previously proposed quantum algorithms for solving linear systems of equations cannot be
implemented in the near term due to the required circuit depth. Here, we propose a hybrid …
implemented in the near term due to the required circuit depth. Here, we propose a hybrid …
Filtering variational quantum algorithms for combinatorial optimization
Current gate-based quantum computers have the potential to provide a computational
advantage if algorithms use quantum hardware efficiently. To make combinatorial …
advantage if algorithms use quantum hardware efficiently. To make combinatorial …
[HTML][HTML] Variational algorithms for linear algebra
Quantum algorithms have been developed for efficiently solving linear algebra tasks.
However, they generally require deep circuits and hence universal fault-tolerant quantum …
However, they generally require deep circuits and hence universal fault-tolerant quantum …
Simulating quantum many-body dynamics on a current digital quantum computer
Universal quantum computers are potentially an ideal setting for simulating many-body
quantum dynamics that is out of reach for classical digital computers. We use state-of-the-art …
quantum dynamics that is out of reach for classical digital computers. We use state-of-the-art …
Qibo: a framework for quantum simulation with hardware acceleration
We present Qibo, a new open-source software for fast evaluation of quantum circuits and
adiabatic evolution which takes full advantage of hardware accelerators. The growing …
adiabatic evolution which takes full advantage of hardware accelerators. The growing …