[HTML][HTML] Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues
This article presents a comprehensive survey of deep learning applications for object
detection and scene perception in autonomous vehicles. Unlike existing review papers, we …
detection and scene perception in autonomous vehicles. Unlike existing review papers, we …
Navigating the pitfalls of applying machine learning in genomics
The scale of genetic, epigenomic, transcriptomic, cheminformatic and proteomic data
available today, coupled with easy-to-use machine learning (ML) toolkits, has propelled the …
available today, coupled with easy-to-use machine learning (ML) toolkits, has propelled the …
End-to-end autonomous driving: Challenges and frontiers
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning
Class imbalance occurs when the class distribution is not equal. Namely, one class is under-
represented (minority class), and the other class has significantly more samples in the data …
represented (minority class), and the other class has significantly more samples in the data …
Balanced contrastive learning for long-tailed visual recognition
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …
occupy most of the data while most minority categories contain a limited number of samples …
Parametric contrastive learning
In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …
Targeted supervised contrastive learning for long-tailed recognition
Real-world data often exhibits long tail distributions with heavy class imbalance, where the
majority classes can dominate the training process and alter the decision boundaries of the …
majority classes can dominate the training process and alter the decision boundaries of the …
Long-tailed recognition via weight balancing
In the real open world, data tends to follow long-tailed class distributions, motivating the well-
studied long-tailed recognition (LTR) problem. Naive training produces models that are …
studied long-tailed recognition (LTR) problem. Naive training produces models that are …
A deep translation (GAN) based change detection network for optical and SAR remote sensing images
With the development of space-based imaging technology, a larger and larger number of
images with different modalities and resolutions are available. The optical images reflect the …
images with different modalities and resolutions are available. The optical images reflect the …
Long-tail learning via logit adjustment
Real-world classification problems typically exhibit an imbalanced or long-tailed label
distribution, wherein many labels are associated with only a few samples. This poses a …
distribution, wherein many labels are associated with only a few samples. This poses a …