Graph neural network for traffic forecasting: A survey

W Jiang, J Luo - Expert systems with applications, 2022 - Elsevier
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …

Spatio-temporal graph neural networks for predictive learning in urban computing: A survey

G **, Y Liang, Y Fang, Z Shao, J Huang… - … on Knowledge and …, 2023 - ieeexplore.ieee.org
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …

Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution

F Li, J Feng, H Yan, G **, F Yang, F Sun… - ACM Transactions on …, 2023 - dl.acm.org
Traffic prediction is the cornerstone of intelligent transportation system. Accurate traffic
forecasting is essential for the applications of smart cities, ie, intelligent traffic management …

Dl-traff: Survey and benchmark of deep learning models for urban traffic prediction

R Jiang, D Yin, Z Wang, Y Wang, J Deng… - Proceedings of the 30th …, 2021 - dl.acm.org
Nowadays, with the rapid development of IoT (Internet of Things) and CPS (Cyber-Physical
Systems) technologies, big spatiotemporal data are being generated from mobile phones …

A novel spatial-temporal multi-scale alignment graph neural network security model for vehicles prediction

C Diao, D Zhang, W Liang, KC Li… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Traffic flow forecasting is indispensable in today's society and regarded as a key problem for
Intelligent Transportation Systems (ITS), as emergency delays in vehicles can cause serious …

ESTNet: embedded spatial-temporal network for modeling traffic flow dynamics

G Luo, H Zhang, Q Yuan, J Li… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Accurate spatial-temporal prediction is a fundamental building block of many real-world
applications such as traffic scheduling and management, environment policy making, and …

Graph neural networks for intelligent transportation systems: A survey

S Rahmani, A Baghbani, N Bouguila… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Graph neural networks (GNNs) have been extensively used in a wide variety of domains in
recent years. Owing to their power in analyzing graph-structured data, they have become …

Unified spatial-temporal neighbor attention network for dynamic traffic prediction

W Long, Z **ao, D Wang, H Jiang… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Traffic prediction plays an essential role in many real-world applications ranging from route
planning to vehicular communications. The goal of making accurate prediction is …

AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

W Zhang, F Zhu, Y Lv, C Tan, W Liu, X Zhang… - … Research Part C …, 2022 - Elsevier
With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic
prediction have achieved great performance in numerous tasks. Compared to other …

Dual dynamic spatial-temporal graph convolution network for traffic prediction

Y Sun, X Jiang, Y Hu, F Duan, K Guo… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Recently, Graph Convolution Network (GCN) and Temporal Convolution Network (TCN) are
introduced into traffic prediction and achieve state-of-the-art performance due to their good …