Practical quantum advantage in quantum simulation
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …
reached the point of having an advantage over classical computers for an artificial problem …
Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Quantum chemistry in the age of quantum computing
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …
widely recognized in the quantum physics and quantum chemistry communities over the …
Quantum computational chemistry
One of the most promising suggested applications of quantum computing is solving
classically intractable chemistry problems. This may help to answer unresolved questions …
classically intractable chemistry problems. This may help to answer unresolved questions …
Quantum algorithms for quantum chemistry and quantum materials science
As we begin to reach the limits of classical computing, quantum computing has emerged as
a technology that has captured the imagination of the scientific world. While for many years …
a technology that has captured the imagination of the scientific world. While for many years …
Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Theory of trotter error with commutator scaling
The Lie-Trotter formula, together with its higher-order generalizations, provides a direct
approach to decomposing the exponential of a sum of operators. Despite significant effort …
approach to decomposing the exponential of a sum of operators. Despite significant effort …
[HTML][HTML] Hamiltonian simulation by qubitization
We present the problem of approximating the time-evolution operator $ e^{-i\hat {H} t} $ to
error $\epsilon $, where the Hamiltonian $\hat {H}=(\langle G|\otimes\hat {\mathcal {I}})\hat …
error $\epsilon $, where the Hamiltonian $\hat {H}=(\langle G|\otimes\hat {\mathcal {I}})\hat …
Quantum state preparation with optimal circuit depth: Implementations and applications
Quantum state preparation is an important subroutine for quantum computing. We show that
any n-qubit quantum state can be prepared with a Θ (n)-depth circuit using only single-and …
any n-qubit quantum state can be prepared with a Θ (n)-depth circuit using only single-and …
Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics
An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2 n-
dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a …
dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a …