Non-intrusive load monitoring: A review

PA Schirmer, I Mporas - IEEE Transactions on Smart Grid, 2022 - ieeexplore.ieee.org
The rapid development of technology in the electrical energy sector within the last 20 years
has led to growing electric power needs through the increased number of electrical …

NILM applications: Literature review of learning approaches, recent developments and challenges

GF Angelis, C Timplalexis, S Krinidis, D Ioannidis… - Energy and …, 2022 - Elsevier
This paper presents a critical approach to the non-intrusive load monitoring (NILM) problem,
by thoroughly reviewing the experimental framework of both legacy and state-of-the-art …

Wavesplit: End-to-end speech separation by speaker clustering

N Zeghidour, D Grangier - IEEE/ACM Transactions on Audio …, 2021 - ieeexplore.ieee.org
We introduce Wavesplit, an end-to-end source separation system. From a single mixture, the
model infers a representation for each source and then estimates each source signal given …

[HTML][HTML] Next-generation energy systems for sustainable smart cities: Roles of transfer learning

Y Himeur, M Elnour, F Fadli, N Meskin, I Petri… - Sustainable Cities and …, 2022 - Elsevier
Smart cities attempt to reach net-zero emissions goals by reducing wasted energy while
improving grid stability and meeting service demand. This is possible by adopting next …

Transfer learning for non-intrusive load monitoring

M D'Incecco, S Squartini… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Non-intrusive load monitoring (NILM) is a technique to recover source appliances from only
the recorded mains in a household. NILM is unidentifiable and thus a challenge problem …

Non-intrusive residential electricity load decomposition via low-resource model transferring

L Lin, J Shi, C Ma, S Zuo, J Zhang, C Chen… - Journal of Building …, 2023 - Elsevier
Non-intrusive load decomposition (NILD) technology has a broad application prospect
because it can deeply excavate the internal electricity consumption data of customers and …

A review of current methods and challenges of advanced deep learning-based non-intrusive load monitoring (NILM) in residential context

H Rafiq, P Manandhar, E Rodriguez-Ubinas… - Energy and …, 2024 - Elsevier
The rising demand for energy conservation in residential buildings has increased interest in
load monitoring techniques by exploiting energy consumption data. In recent years …

Review on deep neural networks applied to low-frequency nilm

P Huber, A Calatroni, A Rumsch, A Paice - Energies, 2021 - mdpi.com
This paper reviews non-intrusive load monitoring (NILM) approaches that employ deep
neural networks to disaggregate appliances from low frequency data, ie, data with sampling …

[HTML][HTML] Towards trustworthy energy disaggregation: A review of challenges, methods, and perspectives for non-intrusive load monitoring

M Kaselimi, E Protopapadakis, A Voulodimos… - Sensors, 2022 - mdpi.com
Non-intrusive load monitoring (NILM) is the task of disaggregating the total power
consumption into its individual sub-components. Over the years, signal processing and …

[HTML][HTML] Connecting the indispensable roles of IoT and artificial intelligence in smart cities: A survey

H Nguyen, D Nawara, R Kashef - Journal of Information and Intelligence, 2024 - Elsevier
The pace of society development is faster than ever before, and the smart city paradigm has
also emerged, which aims to enable citizens to live in more sustainable cities that guarantee …