[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …

Overview and importance of data quality for machine learning tasks

A Jain, H Patel, L Nagalapatti, N Gupta… - Proceedings of the 26th …, 2020 - dl.acm.org
It is well understood from literature that the performance of a machine learning (ML) model is
upper bounded by the quality of the data. While researchers and practitioners have focused …

“Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI

N Sambasivan, S Kapania, H Highfill… - proceedings of the …, 2021 - dl.acm.org
AI models are increasingly applied in high-stakes domains like health and conservation.
Data quality carries an elevated significance in high-stakes AI due to its heightened …

Towards a science of human-ai decision making: a survey of empirical studies

V Lai, C Chen, QV Liao, A Smith-Renner… - arxiv preprint arxiv …, 2021 - arxiv.org
As AI systems demonstrate increasingly strong predictive performance, their adoption has
grown in numerous domains. However, in high-stakes domains such as criminal justice and …

Questioning the AI: informing design practices for explainable AI user experiences

QV Liao, D Gruen, S Miller - Proceedings of the 2020 CHI conference on …, 2020 - dl.acm.org
A surge of interest in explainable AI (XAI) has led to a vast collection of algorithmic work on
the topic. While many recognize the necessity to incorporate explainability features in AI …

Interpreting interpretability: understanding data scientists' use of interpretability tools for machine learning

H Kaur, H Nori, S Jenkins, R Caruana… - Proceedings of the …, 2020 - dl.acm.org
Machine learning (ML) models are now routinely deployed in domains ranging from criminal
justice to healthcare. With this newfound ubiquity, ML has moved beyond academia and …

Studying up machine learning data: Why talk about bias when we mean power?

M Miceli, J Posada, T Yang - Proceedings of the ACM on Human …, 2022 - dl.acm.org
Research in machine learning (ML) has argued that models trained on incomplete or biased
datasets can lead to discriminatory outputs. In this commentary, we propose moving the …

Human-AI collaboration in data science: Exploring data scientists' perceptions of automated AI

D Wang, JD Weisz, M Muller, P Ram, W Geyer… - Proceedings of the …, 2019 - dl.acm.org
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One
application domain is data science. New techniques in automating the creation of AI, known …

How do data science workers collaborate? roles, workflows, and tools

AX Zhang, M Muller, D Wang - Proceedings of the ACM on Human …, 2020 - dl.acm.org
Today, the prominence of data science within organizations has given rise to teams of data
science workers collaborating on extracting insights from data, as opposed to individual data …

The data-production dispositif

M Miceli, J Posada - Proceedings of the ACM on human-computer …, 2022 - dl.acm.org
Machine learning (ML) depends on data to train and verify models. Very often, organizations
outsource processes related to data work (ie, generating and annotating data and …