Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on self-supervised learning: Algorithms, applications, and future trends
Deep supervised learning algorithms typically require a large volume of labeled data to
achieve satisfactory performance. However, the process of collecting and labeling such data …
achieve satisfactory performance. However, the process of collecting and labeling such data …
Self-supervised representation learning: Introduction, advances, and challenges
Self-supervised representation learning (SSRL) methods aim to provide powerful, deep
feature learning without the requirement of large annotated data sets, thus alleviating the …
feature learning without the requirement of large annotated data sets, thus alleviating the …
Videomae v2: Scaling video masked autoencoders with dual masking
Scale is the primary factor for building a powerful foundation model that could well
generalize to a variety of downstream tasks. However, it is still challenging to train video …
generalize to a variety of downstream tasks. However, it is still challenging to train video …
Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training
Pre-training video transformers on extra large-scale datasets is generally required to
achieve premier performance on relatively small datasets. In this paper, we show that video …
achieve premier performance on relatively small datasets. In this paper, we show that video …
Balanced contrastive learning for long-tailed visual recognition
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …
occupy most of the data while most minority categories contain a limited number of samples …
Learning to exploit temporal structure for biomedical vision-language processing
Self-supervised learning in vision--language processing (VLP) exploits semantic alignment
between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the …
between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the …
Contrastive learning for representation degeneration problem in sequential recommendation
Recent advancements of sequential deep learning models such as Transformer and BERT
have significantly facilitated the sequential recommendation. However, according to our …
have significantly facilitated the sequential recommendation. However, according to our …
With a little help from my friends: Nearest-neighbor contrastive learning of visual representations
Self-supervised learning algorithms based on instance discrimination train encoders to be
invariant to pre-defined transformations of the same instance. While most methods treat …
invariant to pre-defined transformations of the same instance. While most methods treat …
Self-supervised learning for videos: A survey
The remarkable success of deep learning in various domains relies on the availability of
large-scale annotated datasets. However, obtaining annotations is expensive and requires …
large-scale annotated datasets. However, obtaining annotations is expensive and requires …
Dense contrastive learning for self-supervised visual pre-training
To date, most existing self-supervised learning methods are designed and optimized for
image classification. These pre-trained models can be sub-optimal for dense prediction …
image classification. These pre-trained models can be sub-optimal for dense prediction …