Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

E (n) equivariant graph neural networks

VG Satorras, E Hoogeboom… - … conference on machine …, 2021 - proceedings.mlr.press
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …

Learning local equivariant representations for large-scale atomistic dynamics

A Musaelian, S Batzner, A Johansson, L Sun… - Nature …, 2023 - nature.com
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …

Equivariant message passing for the prediction of tensorial properties and molecular spectra

K Schütt, O Unke, M Gastegger - … Conference on Machine …, 2021 - proceedings.mlr.press
Message passing neural networks have become a method of choice for learning on graphs,
in particular the prediction of chemical properties and the acceleration of molecular …

Open catalyst 2020 (OC20) dataset and community challenges

L Chanussot, A Das, S Goyal, T Lavril, M Shuaibi… - Acs …, 2021 - ACS Publications
Catalyst discovery and optimization is key to solving many societal and energy challenges
including solar fuel synthesis, long-term energy storage, and renewable fertilizer production …

Gemnet: Universal directional graph neural networks for molecules

J Gasteiger, F Becker… - Advances in Neural …, 2021 - proceedings.neurips.cc
Effectively predicting molecular interactions has the potential to accelerate molecular
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …

Ogb-lsc: A large-scale challenge for machine learning on graphs

W Hu, M Fey, H Ren, M Nakata, Y Dong… - arxiv preprint arxiv …, 2021 - arxiv.org
Enabling effective and efficient machine learning (ML) over large-scale graph data (eg,
graphs with billions of edges) can have a great impact on both industrial and scientific …

3d infomax improves gnns for molecular property prediction

H Stärk, D Beaini, G Corso, P Tossou… - International …, 2022 - proceedings.mlr.press
Molecular property prediction is one of the fastest-growing applications of deep learning with
critical real-world impacts. Although the 3D molecular graph structure is necessary for …