Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Quantum machine learning: from physics to software engineering
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …
technology and artificial intelligence. This review provides a two-fold overview of several key …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Quantum variational algorithms are swamped with traps
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …
trainable they are, though their training algorithms typically rely on optimizing complicated …
A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …
through a parametrized quantum circuit, and measuring the expectation value of some …
A unified theory of barren plateaus for deep parametrized quantum circuits
AFV CoverSheet Page 1 LA-UR-23-30483 Accepted Manuscript A Lie algebraic theory of
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Theory for equivariant quantum neural networks
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …
face trainability and generalization issues. Inspired by a similar problem, recent …
Avoiding barren plateaus using classical shadows
Variational quantum algorithms are promising algorithms for achieving quantum advantage
on near-term devices. The quantum hardware is used to implement a variational wave …
on near-term devices. The quantum hardware is used to implement a variational wave …
Characterizing barren plateaus in quantum ansätze with the adjoint representation
Variational quantum algorithms, a popular heuristic for near-term quantum computers, utilize
parameterized quantum circuits which naturally express Lie groups. It has been postulated …
parameterized quantum circuits which naturally express Lie groups. It has been postulated …