A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
Graph neural network for traffic forecasting: A survey
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …
learning models, including convolution neural networks and recurrent neural networks, have …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
The prediction of crowd flows is an important urban computing issue whose purpose is to
predict the future number of incoming and outgoing people in regions. Measuring the …
predict the future number of incoming and outgoing people in regions. Measuring the …
Spatial-temporal graph ode networks for traffic flow forecasting
Spatial-temporal forecasting has attracted tremendous attention in a wide range of
applications, and traffic flow prediction is a canonical and typical example. The complex and …
applications, and traffic flow prediction is a canonical and typical example. The complex and …
Decoupled dynamic spatial-temporal graph neural network for traffic forecasting
We all depend on mobility, and vehicular transportation affects the daily lives of most of us.
Thus, the ability to forecast the state of traffic in a road network is an important functionality …
Thus, the ability to forecast the state of traffic in a road network is an important functionality …
Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution
Traffic prediction is the cornerstone of intelligent transportation system. Accurate traffic
forecasting is essential for the applications of smart cities, ie, intelligent traffic management …
forecasting is essential for the applications of smart cities, ie, intelligent traffic management …
Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …
critical problem globally, resulting in negative consequences such as lost hours of additional …
Spatio-temporal meta-graph learning for traffic forecasting
Traffic forecasting as a canonical task of multivariate time series forecasting has been a
significant research topic in AI community. To address the spatio-temporal heterogeneity …
significant research topic in AI community. To address the spatio-temporal heterogeneity …
Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting
With the rapid development of the Intelligent Transportation System (ITS), accurate traffic
forecasting has emerged as a critical challenge. The key bottleneck lies in capturing the …
forecasting has emerged as a critical challenge. The key bottleneck lies in capturing the …