Global dynamics for the two-dimensional stochastic nonlinear wave equations

M Gubinelli, H Koch, T Oh… - International Mathematics …, 2022 - academic.oup.com
We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with
an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in …

On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ^{𝕕}, 𝕕≥ 3

Á Bényi, T Oh, O Pocovnicu - … of the American Mathematical Society, Series …, 2015 - ams.org
We consider the Cauchy problem of the cubic nonlinear Schrödinger equation (NLS) $:
i\partial _t u+\Delta u=\pm| u|^{2} u $ on $\mathbb {R}^ d $, $ d\geq 3$, with random initial …

Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on ℝ3

J Lührmann, D Mendelson - Communications in Partial Differential …, 2014 - Taylor & Francis
We consider the defocusing nonlinear wave equation of power-type on ℝ3. We establish an
almost sure global existence result with respect to a suitable randomization of the initial …

Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity

M Gubinelli, H Koch, T Oh - arxiv preprint arxiv:1811.07808, 2018 - arxiv.org
Using ideas from paracontrolled calculus, we prove local well-posedness of a renormalized
version of the three-dimensional stochastic nonlinear wave equation with quadratic …

Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation

T Oh, M Okamoto, N Tzvetkov - Annales de l'Institut Henri Poincare …, 2024 - projecteuclid.org
We study the nonlinear wave equation (NLW) on the two-dimensional torus T 2 with
Gaussian random initial data on H s (T 2)× H s− 1 (T 2), s< 0, distributed according to the …

[HTML][HTML] Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3

T Oh, O Pocovnicu - Journal de Mathématiques Pures et Appliquées, 2016 - Elsevier
We prove almost sure global well-posedness of the energy-critical defocusing quintic
nonlinear wave equation on R 3 with random initial data in H s (R 3)× H s− 1 (R 3) for s> 1 2 …

Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS

Á Bényi, T Oh, O Pocovnicu - Excursions in Harmonic Analysis, Volume 4 …, 2015 - Springer
We introduce a randomization of a function on ℝ d R^ d that is naturally associated to the
Wiener decomposition and, intrinsically, to the modulation spaces. Such randomized …

Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation

B Dodson, J Lührmann, D Mendelson - Advances in Mathematics, 2019 - Elsevier
We consider the Cauchy problem for the defocusing cubic nonlinear Schrödinger equation
in four space dimensions and establish almost sure local well-posedness and conditional …

A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces

T Oh - Funkcialaj Ekvacioj, 2017 - jstage.jst.go.jp
A Remark on Norm Inflation with General Initial Data for the Cubic Nonlinear Schrödinger
Equations in Negative Sobolev Spaces Page 1 Funkcialaj Ekvacioj, 60 (2017) 259–277 A …

Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions

T Gunaratnam, T Oh, N Tzvetkov, H Weber - Probability and Mathematical …, 2022 - msp.org
We prove quasi-invariance of Gaussian measures supported on Sobolev spaces under the
dynamics of the three-dimensional defocusing cubic nonlinear wave equation. As in …