[HTML][HTML] A review of artificial neural networks in the constitutive modeling of composite materials

X Liu, S Tian, F Tao, W Yu - Composites Part B: Engineering, 2021 - Elsevier
Abstract Machine learning models are increasingly used in many engineering fields thanks
to the widespread digital data, growing computing power, and advanced algorithms. The …

Artificial intelligence and sentiment analysis: A review in competitive research

H Taherdoost, M Madanchian - Computers, 2023 - mdpi.com
As part of a business strategy, effective competitive research helps businesses outperform
their competitors and attract loyal consumers. To perform competitive research, sentiment …

[HTML][HTML] A new family of Constitutive Artificial Neural Networks towards automated model discovery

K Linka, E Kuhl - Computer Methods in Applied Mechanics and …, 2023 - Elsevier
For more than 100 years, chemical, physical, and material scientists have proposed
competing constitutive models to best characterize the behavior of natural and man-made …

PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain

H Gao, L Sun, JX Wang - Journal of Computational Physics, 2021 - Elsevier
Recently, the advent of deep learning has spurred interest in the development of physics-
informed neural networks (PINN) for efficiently solving partial differential equations (PDEs) …

Integrating scientific knowledge with machine learning for engineering and environmental systems

J Willard, X Jia, S Xu, M Steinbach, V Kumar - ACM Computing Surveys, 2022 - dl.acm.org
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials

D Bishara, Y **e, WK Liu, S Li - Archives of computational methods in …, 2023 - Springer
Multiscale simulation and homogenization of materials have become the major
computational technology as well as engineering tools in material modeling and material …

Uncovering near-wall blood flow from sparse data with physics-informed neural networks

A Arzani, JX Wang, RM D'Souza - Physics of Fluids, 2021 - pubs.aip.org
Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular
disease, yet they are challenging to quantify with high fidelity. Patient-specific computational …

A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element …

S Rezaei, A Harandi, A Moeineddin, BX Xu… - Computer Methods in …, 2022 - Elsevier
Physics informed neural networks (PINNs) are capable of finding the solution for a given
boundary value problem. Here, the training of the network is equivalent to the minimization …

A review on data-driven constitutive laws for solids

JN Fuhg, G Anantha Padmanabha, N Bouklas… - … Methods in Engineering, 2024 - Springer
This review article highlights state-of-the-art data-driven techniques to discover, encode,
surrogate, or emulate constitutive laws that describe the path-independent and path …

MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems

MJ Buehler - Journal of the Mechanics and Physics of Solids, 2023 - Elsevier
We report a flexible multi-modal mechanics language model, MeLM, applied to solve
various nonlinear forward and inverse problems, that can deal with a set of instructions …