Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning in drug discovery: an integrative review and future challenges
Recently, using artificial intelligence (AI) in drug discovery has received much attention
since it significantly shortens the time and cost of develo** new drugs. Deep learning (DL) …
since it significantly shortens the time and cost of develo** new drugs. Deep learning (DL) …
Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …
powerful modeling capabilities and have been successfully applied in natural language …
Revisiting heterophily for graph neural networks
Abstract Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using
graph structures based on the relational inductive bias (homophily assumption). While …
graph structures based on the relational inductive bias (homophily assumption). While …
A survey on hypergraph representation learning
Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in
naturally modeling a broad range of systems where high-order relationships exist among …
naturally modeling a broad range of systems where high-order relationships exist among …
Long range graph benchmark
Abstract Graph Neural Networks (GNNs) that are based on the message passing (MP)
paradigm generally exchange information between 1-hop neighbors to build node …
paradigm generally exchange information between 1-hop neighbors to build node …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
News-based intelligent prediction of financial markets using text mining and machine learning: A systematic literature review
Researchers and practitioners have attempted to predict the financial market by analyzing
textual (eg, news articles and social media) and numeric data (eg, hourly stock prices, and …
textual (eg, news articles and social media) and numeric data (eg, hourly stock prices, and …
Rethinking graph transformers with spectral attention
In recent years, the Transformer architecture has proven to be very successful in sequence
processing, but its application to other data structures, such as graphs, has remained limited …
processing, but its application to other data structures, such as graphs, has remained limited …
A survey of machine unlearning
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …
abundance of data allows breakthroughs in artificial intelligence, and especially machine …
When do graph neural networks help with node classification? investigating the homophily principle on node distinguishability
Homophily principle, ie, nodes with the same labels are more likely to be connected, has
been believed to be the main reason for the performance superiority of Graph Neural …
been believed to be the main reason for the performance superiority of Graph Neural …