RGB-D salient object detection: A survey
Salient object detection, which simulates human visual perception in locating the most
significant object (s) in a scene, has been widely applied to various computer vision tasks …
significant object (s) in a scene, has been widely applied to various computer vision tasks …
Salient object detection: A survey
Detecting and segmenting salient objects from natural scenes, often referred to as salient
object detection, has attracted great interest in computer vision. While many models have …
object detection, has attracted great interest in computer vision. While many models have …
Calibrated RGB-D salient object detection
Complex backgrounds and similar appearances between objects and their surroundings are
generally recognized as challenging scenarios in Salient Object Detection (SOD). This …
generally recognized as challenging scenarios in Salient Object Detection (SOD). This …
BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network
Multi-level feature fusion is a fundamental topic in computer vision for detecting, segmenting
and classifying objects at various scales. When multi-level features meet multi-modal cues …
and classifying objects at various scales. When multi-level features meet multi-modal cues …
Hierarchical alternate interaction network for RGB-D salient object detection
Existing RGB-D Salient Object Detection (SOD) methods take advantage of depth cues to
improve the detection accuracy, while pay insufficient attention to the quality of depth …
improve the detection accuracy, while pay insufficient attention to the quality of depth …
Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks
The use of RGB-D information for salient object detection (SOD) has been extensively
explored in recent years. However, relatively few efforts have been put toward modeling …
explored in recent years. However, relatively few efforts have been put toward modeling …
Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion
RGB-D salient object detection (SOD) is usually formulated as a problem of classification or
regression over two modalities, ie, RGB and depth. Hence, effective RGB-D feature …
regression over two modalities, ie, RGB and depth. Hence, effective RGB-D feature …
JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection
This paper proposes a novel joint learning and densely-cooperative fusion (JL-DCF)
architecture for RGB-D salient object detection. Existing models usually treat RGB and depth …
architecture for RGB-D salient object detection. Existing models usually treat RGB and depth …
Siamese network for RGB-D salient object detection and beyond
Existing RGB-D salient object detection (SOD) models usually treat RGB and depth as
independent information and design separate networks for feature extraction from each …
independent information and design separate networks for feature extraction from each …
Poolnet+: Exploring the potential of pooling for salient object detection
We explore the potential of pooling techniques on the task of salient object detection by
expanding its role in convolutional neural networks. In general, two pooling-based modules …
expanding its role in convolutional neural networks. In general, two pooling-based modules …