[HTML][HTML] Methods for enabling real-time analysis in digital twins: A literature review

MS Es-haghi, C Anitescu, T Rabczuk - Computers & Structures, 2024 - Elsevier
This paper presents a literature review on methods for enabling real-time analysis in digital
twins, which are virtual models of physical systems. The advantages of digital twins are …

Diabetes type 2 classification using machine learning algorithms with up-sampling technique

MA Hama Saeed - Journal of Electrical Systems and Information …, 2023 - Springer
Recently, the rate of chronic diabetes disease has increased extensively. Diabetes
increases blood sugar and other problems like blurred vision, kidney failure, nerve …

Deep representation learning: Fundamentals, technologies, applications, and open challenges

A Payandeh, KT Baghaei, P Fayyazsanavi… - IEEE …, 2023 - ieeexplore.ieee.org
Machine learning algorithms have had a profound impact on the field of computer science
over the past few decades. The performance of these algorithms heavily depends on the …

Heterogeneous multi-functional look-up-table-based processing-in-memory architecture for deep learning acceleration

S Bavikadi, PR Sutradhar, A Ganguly… - … on Quality Electronic …, 2023 - ieeexplore.ieee.org
Emerging applications including deep neural networks (DNNs) and convolutional neural
networks (CNNs) employ massive amounts of data to perform computations and data …

DRIVING INTO THE FUTURE: REVOLUTIONIZING DRIVING ASSISTANCE FOR CUSTOMERS'LANE CHANGE BEHAVIORS

C Micus, C Hasert, A Kankanhalli, M Böhm, H Krcmar - 2024 - aisel.aisnet.org
In the era of digital transformation, automotive companies are rapidly evolving towards
customer integration and innovation. This study addresses a critical issue of low usage rates …

Development and Evaluation of a Machine Learning Model for the Prediction of Failures in an Injection Moulding Process

A Rojas-Rodríguez, FS Chiwo… - … and Competitiveness in …, 2023 - Springer
Introduction Develo** and evaluating a machine learning model to predict failures in an
injection moulding process offers significant potential to advance manufacturing …

[PDF][PDF] Diseño de un prototipo de asistencia para invidentes mediante el uso de redes neuronales convolucionales

FC Hernández Jurado, JS Rivera Henao - 2024 - repository.udistrital.edu.co
La capacidad de desplazarse con confianza y seguridad es esencial para la vida
independiente y la participaciónactivaenlasociedad. Sinembargo …

Prediction of Safety Performance in Construction Projects Using Machine Learning

K Hjemgård - 2024 - ntnuopen.ntnu.no
Safety in construction projects is a concern for the industry. Accordingly, numerous studies
have been conducted to address the issue. Machine learning models have been developed …

Development and Evaluation of a Machine Learning Model for the Prediction of Failures in an Injection

A Rojas-Rodríguez, FS Chiwo… - … in Industry 4.0 …, 2023 - books.google.com
1 Introduction 1.1 Injection Moulding Injection moulding (IM) is the top manufacturing
process in the industry due to its technical and economic advantages. Its main advantage …

[HTML][HTML] Machine-Learning-basierte Objektivierung subjektiver Fahreindrücke beim eBike-Fahren

A Laqua - 2024 - openhsu.ub.hsu-hh.de
Abstract Der Radverkehr ist zentraler Bestandteil einer klimafreundlichen Mobilität. EBikes
eröffnen neue Möglichkeiten für verschiedene Nutzergruppen und tragen so dazu bei den …