Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Machine-learned potentials for next-generation matter simulations

P Friederich, F Häse, J Proppe, A Aspuru-Guzik - Nature Materials, 2021 - nature.com
The choice of simulation methods in computational materials science is driven by a
fundamental trade-off: bridging large time-and length-scales with highly accurate …

A universal graph deep learning interatomic potential for the periodic table

C Chen, SP Ong - Nature Computational Science, 2022 - nature.com
Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …

DeePMD-kit v2: A software package for deep potential models

J Zeng, D Zhang, D Lu, P Mo, Z Li, Y Chen… - The Journal of …, 2023 - pubs.aip.org
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …

Data‐driven materials science: status, challenges, and perspectives

L Himanen, A Geurts, AS Foster, P Rinke - Advanced Science, 2019 - Wiley Online Library
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …

Performance and cost assessment of machine learning interatomic potentials

Y Zuo, C Chen, X Li, Z Deng, Y Chen… - The Journal of …, 2020 - ACS Publications
Machine learning of the quantitative relationship between local environment descriptors and
the potential energy surface of a system of atoms has emerged as a new frontier in the …

The first-principles phase diagram of monolayer nanoconfined water

V Kapil, C Schran, A Zen, J Chen, CJ Pickard… - Nature, 2022 - nature.com
Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena
in geology and biology. However, the properties of nanoscale water can be substantially …

The role of machine learning in the understanding and design of materials

SM Moosavi, KM Jablonka, B Smit - Journal of the American …, 2020 - ACS Publications
Develo** algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …

Neural network potential energy surfaces for small molecules and reactions

S Manzhos, T Carrington Jr - Chemical Reviews, 2020 - ACS Publications
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …