Autonomous driving system: A comprehensive survey
Automation is increasingly at the forefront of transportation research, with the potential to
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …
Exploration in deep reinforcement learning: A survey
This paper reviews exploration techniques in deep reinforcement learning. Exploration
techniques are of primary importance when solving sparse reward problems. In sparse …
techniques are of primary importance when solving sparse reward problems. In sparse …
End-to-end autonomous driving: Challenges and frontiers
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
Milestones in autonomous driving and intelligent vehicles: Survey of surveys
Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace
due to the convenience, safety, and economic benefits. Although a number of surveys have …
due to the convenience, safety, and economic benefits. Although a number of surveys have …
A survey on trajectory-prediction methods for autonomous driving
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …
Chat with chatgpt on intelligent vehicles: An ieee tiv perspective
This letter reports on a TIV DHW (decentralized and hybrid workshop) that explores the
prospective influence of ChatGPT on research and development in intelligent vehicles. To …
prospective influence of ChatGPT on research and development in intelligent vehicles. To …
A survey on multimodal large language models for autonomous driving
With the emergence of Large Language Models (LLMs) and Vision Foundation Models
(VFMs), multimodal AI systems benefiting from large models have the potential to equally …
(VFMs), multimodal AI systems benefiting from large models have the potential to equally …
A survey on offline reinforcement learning: Taxonomy, review, and open problems
RF Prudencio, MROA Maximo… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the widespread adoption of deep learning, reinforcement learning (RL) has
experienced a dramatic increase in popularity, scaling to previously intractable problems …
experienced a dramatic increase in popularity, scaling to previously intractable problems …
Deep reinforcement learning in smart manufacturing: A review and prospects
To facilitate the personalized smart manufacturing paradigm with cognitive automation
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …