Security and privacy challenges of large language models: A survey

BC Das, MH Amini, Y Wu - ACM Computing Surveys, 2025 - dl.acm.org
Large language models (LLMs) have demonstrated extraordinary capabilities and
contributed to multiple fields, such as generating and summarizing text, language …

Dataset distillation: A comprehensive review

R Yu, S Liu, X Wang - IEEE transactions on pattern analysis …, 2023 - ieeexplore.ieee.org
Recent success of deep learning is largely attributed to the sheer amount of data used for
training deep neural networks. Despite the unprecedented success, the massive data …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Anti-backdoor learning: Training clean models on poisoned data

Y Li, X Lyu, N Koren, L Lyu, B Li… - Advances in Neural …, 2021 - proceedings.neurips.cc
Backdoor attack has emerged as a major security threat to deep neural networks (DNNs).
While existing defense methods have demonstrated promising results on detecting or …

Adversarial neuron pruning purifies backdoored deep models

D Wu, Y Wang - Advances in Neural Information Processing …, 2021 - proceedings.neurips.cc
As deep neural networks (DNNs) are growing larger, their requirements for computational
resources become huge, which makes outsourcing training more popular. Training in a third …

Backdoorbench: A comprehensive benchmark of backdoor learning

B Wu, H Chen, M Zhang, Z Zhu, S Wei… - Advances in …, 2022 - proceedings.neurips.cc
Backdoor learning is an emerging and vital topic for studying deep neural networks'
vulnerability (DNNs). Many pioneering backdoor attack and defense methods are being …

Backdoor learning: A survey

Y Li, Y Jiang, Z Li, ST **a - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …

Wild patterns reloaded: A survey of machine learning security against training data poisoning

AE Cinà, K Grosse, A Demontis, S Vascon… - ACM Computing …, 2023 - dl.acm.org
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …

Reconstructive neuron pruning for backdoor defense

Y Li, X Lyu, X Ma, N Koren, L Lyu… - … on Machine Learning, 2023 - proceedings.mlr.press
Deep neural networks (DNNs) have been found to be vulnerable to backdoor attacks,
raising security concerns about their deployment in mission-critical applications. While …

Privacy and robustness in federated learning: Attacks and defenses

L Lyu, H Yu, X Ma, C Chen, L Sun… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
As data are increasingly being stored in different silos and societies becoming more aware
of data privacy issues, the traditional centralized training of artificial intelligence (AI) models …