Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …
particularly machine learning algorithms, range from initial image processing to high-level …
A comprehensive survey on recent metaheuristics for feature selection
Feature selection has become an indispensable machine learning process for data
preprocessing due to the ever-increasing sizes in actual data. There have been many …
preprocessing due to the ever-increasing sizes in actual data. There have been many …
Spectral–spatial feature tokenization transformer for hyperspectral image classification
In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover
category. In the recent past, convolutional neural network (CNN)-based HSI classification …
category. In the recent past, convolutional neural network (CNN)-based HSI classification …
Hyperspectral image classification using group-aware hierarchical transformer
S Mei, C Song, M Ma, F Xu - IEEE Transactions on Geoscience …, 2022 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification is a critical task with numerous applications in the
field of remote sensing. Although convolutional neural networks have achieved remarkable …
field of remote sensing. Although convolutional neural networks have achieved remarkable …
Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification
Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN), such as Graph
Attention Networks (GAT), are two classic neural network models, which are applied to the …
Attention Networks (GAT), are two classic neural network models, which are applied to the …
SpectralFormer: Rethinking hyperspectral image classification with transformers
Hyperspectral (HS) images are characterized by approximately contiguous spectral
information, enabling the fine identification of materials by capturing subtle spectral …
information, enabling the fine identification of materials by capturing subtle spectral …
Auto-encoders in deep learning—a review with new perspectives
S Chen, W Guo - Mathematics, 2023 - mdpi.com
Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure …
development of neural networks. The auto-encoder is a key component of deep structure …
Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances
The key elements that underpin food security require the adaptation of agricultural systems
to support productivity increases while minimizing inputs and the adverse effects of climate …
to support productivity increases while minimizing inputs and the adverse effects of climate …
Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification
Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
Hyperspectral image transformer classification networks
Hyperspectral image (HSI) classification is an important task in earth observation missions.
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …