Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Backbones-review: Feature extractor networks for deep learning and deep reinforcement learning approaches in computer vision
To understand the real world using various types of data, Artificial Intelligence (AI) is the
most used technique nowadays. While finding the pattern within the analyzed data …
most used technique nowadays. While finding the pattern within the analyzed data …
Physical adversarial attack meets computer vision: A decade survey
Despite the impressive achievements of Deep Neural Networks (DNNs) in computer vision,
their vulnerability to adversarial attacks remains a critical concern. Extensive research has …
their vulnerability to adversarial attacks remains a critical concern. Extensive research has …
Rethinking counting and localization in crowds: A purely point-based framework
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …
subsequent high-level crowd analysis tasks than simply counting. However, existing …
Crowdclip: Unsupervised crowd counting via vision-language model
Supervised crowd counting relies heavily on costly manual labeling, which is difficult and
expensive, especially in dense scenes. To alleviate the problem, we propose a novel …
expensive, especially in dense scenes. To alleviate the problem, we propose a novel …
A generalized loss function for crowd counting and localization
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …
of crowd counting. In this paper, we investigate learning the density map representation …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
Transcrowd: weakly-supervised crowd counting with transformers
The mainstream crowd counting methods usually utilize the convolution neural network
(CNN) to regress a density map, requiring point-level annotations. However, annotating …
(CNN) to regress a density map, requiring point-level annotations. However, annotating …
Point-query quadtree for crowd counting, localization, and more
We show that crowd counting can be viewed as a decomposable point querying process.
This formulation enables arbitrary points as input and jointly reasons whether the points are …
This formulation enables arbitrary points as input and jointly reasons whether the points are …
To choose or to fuse? scale selection for crowd counting
In this paper, we address the large scale variation problem in crowd counting by taking full
advantage of the multi-scale feature representations in a multi-level network. We implement …
advantage of the multi-scale feature representations in a multi-level network. We implement …
Steerer: Resolving scale variations for counting and localization via selective inheritance learning
Scale variation is a deep-rooted problem in object counting, which has not been effectively
addressed by existing scale-aware algorithms. An important factor is that they typically …
addressed by existing scale-aware algorithms. An important factor is that they typically …