Reinforcement learning for combinatorial optimization: A survey

N Mazyavkina, S Sviridov, S Ivanov… - Computers & Operations …, 2021 - Elsevier
Many traditional algorithms for solving combinatorial optimization problems involve using
hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed …

A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems

E Kaya, B Gorkemli, B Akay, D Karaboga - Engineering Applications of …, 2022 - Elsevier
The ABC algorithm is one of the popular optimization algorithms and has been used
successfully in solving many real-world problems. Numeric, binary, integer, mixed integer …

Difusco: Graph-based diffusion solvers for combinatorial optimization

Z Sun, Y Yang - Advances in Neural Information Processing …, 2023 - proceedings.neurips.cc
Abstract Neural network-based Combinatorial Optimization (CO) methods have shown
promising results in solving various NP-complete (NPC) problems without relying on hand …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Let the flows tell: Solving graph combinatorial problems with gflownets

D Zhang, H Dai, N Malkin… - Advances in neural …, 2023 - proceedings.neurips.cc
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact
algorithms, making them a tempting domain to apply machine learning methods. The highly …

Dimes: A differentiable meta solver for combinatorial optimization problems

R Qiu, Z Sun, Y Yang - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Recently, deep reinforcement learning (DRL) models have shown promising results in
solving NP-hard Combinatorial Optimization (CO) problems. However, most DRL solvers …

Deep reinforcement learning for transportation network combinatorial optimization: A survey

Q Wang, C Tang - Knowledge-Based Systems, 2021 - Elsevier
Traveling salesman and vehicle routing problems with their variants, as classic
combinatorial optimization problems, have attracted considerable attention for decades of …

Sym-nco: Leveraging symmetricity for neural combinatorial optimization

M Kim, J Park, J Park - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Deep reinforcement learning (DRL)-based combinatorial optimization (CO) methods (ie,
DRL-NCO) have shown significant merit over the conventional CO solvers as DRL-NCO is …

Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities

Y Yan, AHF Chow, CP Ho, YH Kuo, Q Wu… - … Research Part E …, 2022 - Elsevier
With advances in technologies, data science techniques, and computing equipment, there
has been rapidly increasing interest in the applications of reinforcement learning (RL) to …

Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt

Y Ma, Z Cao, YM Chee - Advances in Neural Information …, 2024 - proceedings.neurips.cc
In this paper, we present Neural k-Opt (NeuOpt), a novel learning-to-search (L2S) solver for
routing problems. It learns to perform flexible k-opt exchanges based on a tailored action …