Recent advances in adversarial training for adversarial robustness
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …
examples for deep learning models. Unlike other defense strategies, adversarial training …
Learning from noisy labels with deep neural networks: A survey
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …
amounts of big data. However, the quality of data labels is a concern because of the lack of …
Robustbench: a standardized adversarial robustness benchmark
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …
adversarial robustness which often makes it hard to identify the most promising ideas in …
Measuring robustness to natural distribution shifts in image classification
We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image …
variations in datasets. Most research on robustness focuses on synthetic image …
Label-only membership inference attacks
Membership inference is one of the simplest privacy threats faced by machine learning
models that are trained on private sensitive data. In this attack, an adversary infers whether a …
models that are trained on private sensitive data. In this attack, an adversary infers whether a …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
Improving robustness against common corruptions by covariate shift adaptation
Today's state-of-the-art machine vision models are vulnerable to image corruptions like
blurring or compression artefacts, limiting their performance in many real-world applications …
blurring or compression artefacts, limiting their performance in many real-world applications …
Randaugment: Practical automated data augmentation with a reduced search space
Recent work on automated augmentation strategies has led to state-of-the-art results in
image classification and object detection. An obstacle to a large-scale adoption of these …
image classification and object detection. An obstacle to a large-scale adoption of these …
Adversarial examples are not bugs, they are features
Adversarial examples have attracted significant attention in machine learning, but the
reasons for their existence and pervasiveness remain unclear. We demonstrate that …
reasons for their existence and pervasiveness remain unclear. We demonstrate that …
Certified adversarial robustness via randomized smoothing
We show how to turn any classifier that classifies well under Gaussian noise into a new
classifier that is certifiably robust to adversarial perturbations under the L2 norm. While this" …
classifier that is certifiably robust to adversarial perturbations under the L2 norm. While this" …