[HTML][HTML] Deliberation for autonomous robots: A survey

F Ingrand, M Ghallab - Artificial Intelligence, 2017 - Elsevier
Autonomous robots facing a diversity of open environments and performing a variety of tasks
and interactions need explicit deliberation in order to fulfill their missions. Deliberation is …

A comprehensive survey of multiagent reinforcement learning

L Busoniu, R Babuska… - IEEE Transactions on …, 2008 - ieeexplore.ieee.org
Multiagent systems are rapidly finding applications in a variety of domains, including
robotics, distributed control, telecommunications, and economics. The complexity of many …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Emergent tool use from multi-agent autocurricula

B Baker, I Kanitscheider, T Markov, Y Wu… - arxiv preprint arxiv …, 2019 - arxiv.org
Through multi-agent competition, the simple objective of hide-and-seek, and standard
reinforcement learning algorithms at scale, we find that agents create a self-supervised …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Deep reinforcement learning

SE Li - Reinforcement learning for sequential decision and …, 2023 - Springer
Similar to humans, RL agents use interactive learning to successfully obtain satisfactory
decision strategies. However, in many cases, it is desirable to learn directly from …

From skills to symbols: Learning symbolic representations for abstract high-level planning

G Konidaris, LP Kaelbling, T Lozano-Perez - Journal of Artificial Intelligence …, 2018 - jair.org
We consider the problem of constructing abstract representations for planning in high-
dimensional, continuous environments. We assume an agent equipped with a collection of …

Relational deep reinforcement learning

V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li… - arxiv preprint arxiv …, 2018 - arxiv.org
We introduce an approach for deep reinforcement learning (RL) that improves upon the
efficiency, generalization capacity, and interpretability of conventional approaches through …

Statistical relational artificial intelligence: Logic, probability, and computation

LD Raedt, K Kersting, S Natarajan, D Poole - Synthesis lectures on …, 2016 - Springer
An intelligent agent interacting with the real world will encounter individual people, courses,
test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of …

A survey on interpretable reinforcement learning

C Glanois, P Weng, M Zimmer, D Li, T Yang, J Hao… - Machine Learning, 2024 - Springer
Although deep reinforcement learning has become a promising machine learning approach
for sequential decision-making problems, it is still not mature enough for high-stake domains …