Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer

J Ogier du Terrail, A Leopold, C Joly, C Béguier… - Nature medicine, 2023 - nature.com
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic
potential and poor prognosis, and has limited treatment options. The current standard of …

Advances in artificial intelligence for infectious-disease surveillance

JS Brownstein, B Rader, CM Astley… - New England Journal of …, 2023 - Mass Medical Soc
Advances in Artificial Intelligence for Infectious-Disease Surveillance | New England Journal of
Medicine Skip to main content The New England Journal of Medicine homepage Advanced …

Auditing privacy defenses in federated learning via generative gradient leakage

Z Li, J Zhang, L Liu, J Liu - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Federated Learning (FL) framework brings privacy benefits to distributed learning systems
by allowing multiple clients to participate in a learning task under the coordination of a …

Review on security of federated learning and its application in healthcare

H Li, C Li, J Wang, A Yang, Z Ma, Z Zhang… - Future Generation …, 2023 - Elsevier
Artificial intelligence (AI) has led to a high rate of development in healthcare, and good
progress has been made on many complex medical problems. However, there is a lack of …

Federated learning for the healthcare metaverse: Concepts, applications, challenges, and future directions

AK Bashir, N Victor, S Bhattacharya… - IEEE Internet of …, 2023 - ieeexplore.ieee.org
Recent technological advancements have considerably improved healthcare systems to
provide various intelligent services, improving life quality. The Metaverse, often described as …

Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models

B Saravi, F Hassel, S Ülkümen, A Zink… - Journal of Personalized …, 2022 - mdpi.com
Healthcare systems worldwide generate vast amounts of data from many different sources.
Although of high complexity for a human being, it is essential to determine the patterns and …

Federated learning for medical applications: A taxonomy, current trends, challenges, and future research directions

A Rauniyar, DH Hagos, D Jha… - IEEE Internet of …, 2023 - ieeexplore.ieee.org
With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning
(ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications …

Specificity-preserving federated learning for MR image reconstruction

CM Feng, Y Yan, S Wang, Y Xu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Federated learning (FL) can be used to improve data privacy and efficiency in magnetic
resonance (MR) image reconstruction by enabling multiple institutions to collaborate without …