[HTML][HTML] Exponential meshes and H-matrices

N Angleitner, M Faustmann, JM Melenk - Computers & Mathematics with …, 2023 - Elsevier
Abstract In [1], we proved that the inverse of the stiffness matrix of an h-version finite element
method (FEM) applied to scalar second order elliptic boundary value problems can be …

Adaptive BEM with inexact PCG solver yields almost optimal computational costs

T Führer, A Haberl, D Praetorius, S Schimanko - Numerische Mathematik, 2019 - Springer
We consider the preconditioned conjugate gradient method (PCG) with optimal
preconditioner in the frame of the boundary element method for elliptic first-kind integral …

On interpolation spaces of piecewise polynomials on mixed meshes

M Karkulik, JM Melenk, A Rieder - arxiv preprint arxiv:2306.16907, 2023 - arxiv.org
We consider fractional Sobolev spaces $ H^\theta $, $\theta\in (0, 1) $, on 2D domains and $
H^ 1$-conforming discretizations by globally continuous piecewise polynomials on a mesh …

Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods

T Führer, G Gantner, D Praetorius… - Computer Methods in …, 2019 - Elsevier
We define and analyze (local) multilevel diagonal preconditioners for isogeometric
boundary elements on locally refined meshes in two dimensions. Hypersingular and weakly …

On interpolation spaces of piecewise polynomials on mixed meshes

M Karkulik, JM Melenk, A Rieder - ESAIM: Mathematical Modelling …, 2025 - esaim-m2an.org
We consider fractional Sobolev spaces H θ, θ∈(0, 1), on 2D domains and H 1-conforming
discretizations by globally continuous piecewise polynomials on a mesh consisting of shape …

Stable decompositions of hp-BEM spaces and an optimal Schwarz preconditioner for the hypersingular integral operator in 3D

M Karkulik, JM Melenk, A Rieder - ESAIM: Mathematical Modelling …, 2020 - esaim-m2an.org
We consider fractional Sobolev spaces H θ (Γ), θ∈[0, 1] on a 2D surface Γ. We show that
functions in H θ (Γ) can be decomposed into contributions with local support in a stable way …

H-inverses of Gram matrices

N Angleitner - 2022 - repositum.tuwien.at
In this thesis, we prove that the inverse of a certain type of Gram matrix can be approximated
well from the class of hierarchical matrices. The entries of a Gram matrix are determined by a …

Exponential meshes and -matrices

N Angleitner, M Faustmann, JM Melenk - arxiv preprint arxiv:2203.09925, 2022 - arxiv.org
In our previous works, we proved that the inverse of the stiffness matrix of an $ h $-version
finite element method (FEM) applied to scalar second order elliptic boundary value …

Well-conditioned frames for high order finite element methods

K Hu, R Winther - arxiv preprint arxiv:1705.07113, 2017 - arxiv.org
The purpose of this paper is to discuss representations of high order $ C^ 0$ finite element
spaces on simplicial meshes in any dimension. When computing with high order piecewise …

Optimal additive Schwarz preconditioning for the hp-BEM: the hypersingular integral operator in 3D

A Rieder, T Führer, JM Melenk… - Linz, Austria, May 6–8 …, 2015 - ricam.oeaw.ac.at
We consider the discretization of the hypersingular integral operator by the hp-version of the
Galerkin boundary element method (hp-BEM) and propose a preconditioner based on the …