Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
The randomized measurement toolbox
Programmable quantum simulators and quantum computers are opening unprecedented
opportunities for exploring and exploiting the properties of highly entangled complex …
opportunities for exploring and exploiting the properties of highly entangled complex …
Quantum advantage in learning from experiments
Quantum technology promises to revolutionize how we learn about the physical world. An
experiment that processes quantum data with a quantum computer could have substantial …
experiment that processes quantum data with a quantum computer could have substantial …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Learning quantum systems
The future development of quantum technologies relies on creating and manipulating
quantum systems of increasing complexity, with key applications in computation, simulation …
quantum systems of increasing complexity, with key applications in computation, simulation …
Theory for equivariant quantum neural networks
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …
face trainability and generalization issues. Inspired by a similar problem, recent …
Avoiding barren plateaus using classical shadows
Variational quantum algorithms are promising algorithms for achieving quantum advantage
on near-term devices. The quantum hardware is used to implement a variational wave …
on near-term devices. The quantum hardware is used to implement a variational wave …
Many-body localization in the age of classical computing
Statistical mechanics provides a framework for describing the physics of large, complex
many-body systems using only a few macroscopic parameters to determine the state of the …
many-body systems using only a few macroscopic parameters to determine the state of the …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …