A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
Graph neural network for traffic forecasting: A survey
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …
learning models, including convolution neural networks and recurrent neural networks, have …
Spatio-temporal graph neural networks for predictive learning in urban computing: A survey
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …
[HTML][HTML] Computational approaches to explainable artificial intelligence: advances in theory, applications and trends
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a
driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted …
driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted …
Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …
critical problem globally, resulting in negative consequences such as lost hours of additional …
Adaptive graph convolutional recurrent network for traffic forecasting
Modeling complex spatial and temporal correlations in the correlated time series data is
indispensable for understanding the traffic dynamics and predicting the future status of an …
indispensable for understanding the traffic dynamics and predicting the future status of an …
Graph neural network for traffic forecasting: The research progress
Traffic forecasting has been regarded as the basis for many intelligent transportation system
(ITS) applications, including but not limited to trip planning, road traffic control, and vehicle …
(ITS) applications, including but not limited to trip planning, road traffic control, and vehicle …
Deep learning on traffic prediction: Methods, analysis, and future directions
X Yin, G Wu, J Wei, Y Shen, H Qi… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …
[HTML][HTML] Urban traffic flow prediction techniques: A review
In recent decades, the development of transport infrastructure has had a great development,
although traffic problems continue to spread due to increase due to the increase in the …
although traffic problems continue to spread due to increase due to the increase in the …
Deep reinforcement learning for transportation network combinatorial optimization: A survey
Q Wang, C Tang - Knowledge-Based Systems, 2021 - Elsevier
Traveling salesman and vehicle routing problems with their variants, as classic
combinatorial optimization problems, have attracted considerable attention for decades of …
combinatorial optimization problems, have attracted considerable attention for decades of …