Transfer learning for drug discovery

C Cai, S Wang, Y Xu, W Zhang, K Tang… - Journal of Medicinal …, 2020 - ACS Publications
The data sets available to train models for in silico drug discovery efforts are often small.
Indeed, the sparse availability of labeled data is a major barrier to artificial-intelligence …

A review of single-source deep unsupervised visual domain adaptation

S Zhao, X Yue, S Zhang, B Li, H Zhao… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Large-scale labeled training datasets have enabled deep neural networks to excel across a
wide range of benchmark vision tasks. However, in many applications, it is prohibitively …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Agnostic federated learning

M Mohri, G Sivek, AT Suresh - International conference on …, 2019 - proceedings.mlr.press
A key learning scenario in large-scale applications is that of federated learning, where a
centralized model is trained based on data originating from a large number of clients. We …

Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization

JP Miller, R Taori, A Raghunathan… - International …, 2021 - proceedings.mlr.press
For machine learning systems to be reliable, we must understand their performance in
unseen, out-of-distribution environments. In this paper, we empirically show that out-of …

A survey of unsupervised deep domain adaptation

G Wilson, DJ Cook - ACM Transactions on Intelligent Systems and …, 2020 - dl.acm.org
Deep learning has produced state-of-the-art results for a variety of tasks. While such
approaches for supervised learning have performed well, they assume that training and …

Test-time training with self-supervision for generalization under distribution shifts

Y Sun, X Wang, Z Liu, J Miller… - … on machine learning, 2020 - proceedings.mlr.press
In this paper, we propose Test-Time Training, a general approach for improving the
performance of predictive models when training and test data come from different …

[HTML][HTML] Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results

X Li, Y Gu, N Dvornek, LH Staib, P Ventola… - Medical image …, 2020 - Elsevier
Deep learning models have shown their advantage in many different tasks, including
neuroimage analysis. However, to effectively train a high-quality deep learning model, the …