How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Editing models with task arithmetic

G Ilharco, MT Ribeiro, M Wortsman… - arxiv preprint arxiv …, 2022 - arxiv.org
Changing how pre-trained models behave--eg, improving their performance on a
downstream task or mitigating biases learned during pre-training--is a common practice …

Fedala: Adaptive local aggregation for personalized federated learning

J Zhang, Y Hua, H Wang, T Song, Z Xue… - Proceedings of the …, 2023 - ojs.aaai.org
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the
generalization of the global model on each client. To address this, we propose a method …

Git re-basin: Merging models modulo permutation symmetries

SK Ainsworth, J Hayase, S Srinivasa - arxiv preprint arxiv:2209.04836, 2022 - arxiv.org
The success of deep learning is due in large part to our ability to solve certain massive non-
convex optimization problems with relative ease. Though non-convex optimization is NP …

Rethinking network design and local geometry in point cloud: A simple residual MLP framework

X Ma, C Qin, H You, H Ran, Y Fu - arxiv preprint arxiv:2202.07123, 2022 - arxiv.org
Point cloud analysis is challenging due to irregularity and unordered data structure. To
capture the 3D geometries, prior works mainly rely on exploring sophisticated local …

Transmorph: Transformer for unsupervised medical image registration

J Chen, EC Frey, Y He, WP Segars, Y Li, Y Du - Medical image analysis, 2022 - Elsevier
In the last decade, convolutional neural networks (ConvNets) have been a major focus of
research in medical image analysis. However, the performances of ConvNets may be limited …

Quantum variational algorithms are swamped with traps

ER Anschuetz, BT Kiani - Nature Communications, 2022 - nature.com
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …

A comprehensive and fair comparison between mlp and kan representations for differential equations and operator networks

K Shukla, JD Toscano, Z Wang, Z Zou… - Computer Methods in …, 2024 - Elsevier
Abstract Kolmogorov–Arnold Networks (KANs) were recently introduced as an alternative
representation model to MLP. Herein, we employ KANs to construct physics-informed …

Understanding plasticity in neural networks

C Lyle, Z Zheng, E Nikishin, BA Pires… - International …, 2023 - proceedings.mlr.press
Plasticity, the ability of a neural network to quickly change its predictions in response to new
information, is essential for the adaptability and robustness of deep reinforcement learning …