Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on hypergraph representation learning
Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in
naturally modeling a broad range of systems where high-order relationships exist among …
naturally modeling a broad range of systems where high-order relationships exist among …
Deep clustering: A comprehensive survey
Cluster analysis plays an indispensable role in machine learning and data mining. Learning
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
Uni-mol: A universal 3d molecular representation learning framework
Molecular representation learning (MRL) has gained tremendous attention due to its critical
role in learning from limited supervised data for applications like drug design. In most MRL …
role in learning from limited supervised data for applications like drug design. In most MRL …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Deepvit: Towards deeper vision transformer
Vision transformers (ViTs) have been successfully applied in image classification tasks
recently. In this paper, we show that, unlike convolution neural networks (CNNs) that can be …
recently. In this paper, we show that, unlike convolution neural networks (CNNs) that can be …
Graph learning: A survey
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …
data. Graph data can be found in a broad spectrum of application domains such as social …
A comprehensive survey of dataset distillation
Deep learning technology has developed unprecedentedly in the last decade and has
become the primary choice in many application domains. This progress is mainly attributed …
become the primary choice in many application domains. This progress is mainly attributed …
Influence maximization in social networks using graph embedding and graph neural network
With the boom in technologies and mobile networks in recent years, online social networks
have become an integral part of our daily lives. These virtual networks connect people …
have become an integral part of our daily lives. These virtual networks connect people …
Traffic flow prediction via spatial temporal graph neural network
Traffic flow analysis, prediction and management are keystones for building smart cities in
the new era. With the help of deep neural networks and big traffic data, we can better …
the new era. With the help of deep neural networks and big traffic data, we can better …
A survey on heterogeneous graph embedding: methods, techniques, applications and sources
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …