Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven

Q Zhang, Y Zheng, Q Yuan, M Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …

Multilayer sparsity-based tensor decomposition for low-rank tensor completion

J Xue, Y Zhao, S Huang, W Liao… - … on Neural Networks …, 2021 - ieeexplore.ieee.org
Existing methods for tensor completion (TC) have limited ability for characterizing low-rank
(LR) structures. To depict the complex hierarchical knowledge with implicit sparsity attributes …

Non-local meets global: An iterative paradigm for hyperspectral image restoration

W He, Q Yao, C Li, N Yokoya, Q Zhao… - … on Pattern Analysis …, 2020 - ieeexplore.ieee.org
Non-local low-rank tensor approximation has been developed as a state-of-the-art method
for hyperspectral image (HSI) restoration, which includes the tasks of denoising …

Spatial-spectral structured sparse low-rank representation for hyperspectral image super-resolution

J Xue, YQ Zhao, Y Bu, W Liao… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-
MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution …

Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising

Q Zhang, Q Yuan, M Song, H Yu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Model-driven methods and data-driven methods have been widely developed for
hyperspectral image (HSI) denoising. However, there are pros and cons in both model …

Deep spatial-spectral global reasoning network for hyperspectral image denoising

X Cao, X Fu, C Xu, D Meng - IEEE Transactions on Geoscience …, 2021 - ieeexplore.ieee.org
Although deep neural networks (DNNs) have been widely applied to hyperspectral image
(HSI) denoising, most DNN-based HSI denoising methods are designed by stacking …

When Laplacian scale mixture meets three-layer transform: A parametric tensor sparsity for tensor completion

J Xue, Y Zhao, Y Bu, JCW Chan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Recently, tensor sparsity modeling has achieved great success in the tensor completion
(TC) problem. In real applications, the sparsity of a tensor can be rationally measured by low …

Mixed noise removal in hyperspectral image via low-fibered-rank regularization

YB Zheng, TZ Huang, XL Zhao, TX Jiang… - … on Geoscience and …, 2019 - ieeexplore.ieee.org
The tensor tubal rank, defined based on the tensor singular value decomposition (t-SVD),
has obtained promising results in hyperspectral image (HSI) denoising. However, the …

Guaranteed tensor recovery fused low-rankness and smoothness

H Wang, J Peng, W Qin, J Wang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Tensor recovery is a fundamental problem in tensor research field. It generally requires to
explore intrinsic prior structures underlying tensor data, and formulate them as certain forms …